A~matrix equation for resolvents of random matrices with independent blocks
Teoriâ veroâtnostej i ee primeneniâ, Tome 40 (1995) no. 4, pp. 741-753
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper extends the Wegner semicircular law to symmetric matrices with independent random blocks obeying a Lindeberg-type condition and allowing arbitrary dependence of elements within each block. It is proved that the Stieltjes transform of the limiting spectral functions satisfies a matrix canonical spectral equation.
Keywords:
REFORM method, eigenvalues, Lindeberg's condition, canonical spectral equation.
Mots-clés : Stieltjes transform
Mots-clés : Stieltjes transform
@article{TVP_1995_40_4_a2,
author = {V. L. Girko},
title = {A~matrix equation for resolvents of random matrices with independent blocks},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {741--753},
publisher = {mathdoc},
volume = {40},
number = {4},
year = {1995},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1995_40_4_a2/}
}
V. L. Girko. A~matrix equation for resolvents of random matrices with independent blocks. Teoriâ veroâtnostej i ee primeneniâ, Tome 40 (1995) no. 4, pp. 741-753. http://geodesic.mathdoc.fr/item/TVP_1995_40_4_a2/