Reversion of Chebyshev's inequality
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 40 (1995) no. 4, pp. 873-878
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Without using complex analysis, we deduce a lower estimate for the distribution tail of a random variable in terms of its moment-generating function.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
moment-generating function, Young–Fenchel transformation.
                    
                  
                
                
                @article{TVP_1995_40_4_a11,
     author = {D. R. Bagdasarov and E. I. Ostrovskii},
     title = {Reversion of {Chebyshev's} inequality},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {873--878},
     publisher = {mathdoc},
     volume = {40},
     number = {4},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1995_40_4_a11/}
}
                      
                      
                    D. R. Bagdasarov; E. I. Ostrovskii. Reversion of Chebyshev's inequality. Teoriâ veroâtnostej i ee primeneniâ, Tome 40 (1995) no. 4, pp. 873-878. http://geodesic.mathdoc.fr/item/TVP_1995_40_4_a11/
