Reversion of Chebyshev's inequality
Teoriâ veroâtnostej i ee primeneniâ, Tome 40 (1995) no. 4, pp. 873-878

Voir la notice de l'article provenant de la source Math-Net.Ru

Without using complex analysis, we deduce a lower estimate for the distribution tail of a random variable in terms of its moment-generating function.
Keywords: moment-generating function, Young–Fenchel transformation.
@article{TVP_1995_40_4_a11,
     author = {D. R. Bagdasarov and E. I. Ostrovskii},
     title = {Reversion of {Chebyshev's} inequality},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {873--878},
     publisher = {mathdoc},
     volume = {40},
     number = {4},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1995_40_4_a11/}
}
TY  - JOUR
AU  - D. R. Bagdasarov
AU  - E. I. Ostrovskii
TI  - Reversion of Chebyshev's inequality
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1995
SP  - 873
EP  - 878
VL  - 40
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1995_40_4_a11/
LA  - ru
ID  - TVP_1995_40_4_a11
ER  - 
%0 Journal Article
%A D. R. Bagdasarov
%A E. I. Ostrovskii
%T Reversion of Chebyshev's inequality
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1995
%P 873-878
%V 40
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1995_40_4_a11/
%G ru
%F TVP_1995_40_4_a11
D. R. Bagdasarov; E. I. Ostrovskii. Reversion of Chebyshev's inequality. Teoriâ veroâtnostej i ee primeneniâ, Tome 40 (1995) no. 4, pp. 873-878. http://geodesic.mathdoc.fr/item/TVP_1995_40_4_a11/