Equimeasurable sets and cylindrical measures
Teoriâ veroâtnostej i ee primeneniâ, Tome 40 (1995) no. 4, pp. 731-740
Cet article a éte moissonné depuis la source Math-Net.Ru
We obtain a characterization of equimeasurable sets in the space $S(\Omega ,\Sigma,\mathbf{P})$ in terms of the coincidence of convergence in probability and almost sure convergence. The notion of an equimeasurable set is used to obtain criteria for extending a cylindrical measure to a Radon measure and also to establish a criterion of the existence of continuous trajectories of a linear random function on an absolutely convex weak compact set.
Keywords:
equimeasurable sets, cylindrical measures, convergence in probability, almost sure convergence.
@article{TVP_1995_40_4_a1,
author = {Yu. N. Vladimirskii},
title = {Equimeasurable sets and cylindrical measures},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {731--740},
year = {1995},
volume = {40},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1995_40_4_a1/}
}
Yu. N. Vladimirskii. Equimeasurable sets and cylindrical measures. Teoriâ veroâtnostej i ee primeneniâ, Tome 40 (1995) no. 4, pp. 731-740. http://geodesic.mathdoc.fr/item/TVP_1995_40_4_a1/