Transformation of one-dimensional diffusion fields in the plane
Teoriâ veroâtnostej i ee primeneniâ, Tome 40 (1995) no. 3, pp. 565-577
Voir la notice de l'article provenant de la source Math-Net.Ru
Necessary and sufficient conditions are given for the possibility of a diffusion field defined by diffusion and transfer coefficients to be transformed into another field. The problem of transforming a diffusion field into a Gaussian continuous square integrable martingale and, in particular, into a Wiener field is investigated in detail.
Keywords:
conditional independence of $\sigma$-algebras, Gaussian strong continuous martingales, square integrable martingales, Wiener fields, stochastic differential equations, bidirected diffusion fields, the Itô, invariance problem.
Mots-clés : equivalent diffusion fields, formula
Mots-clés : equivalent diffusion fields, formula
@article{TVP_1995_40_3_a6,
author = {I. D. Cherkasov},
title = {Transformation of one-dimensional diffusion fields in the plane},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {565--577},
publisher = {mathdoc},
volume = {40},
number = {3},
year = {1995},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1995_40_3_a6/}
}
I. D. Cherkasov. Transformation of one-dimensional diffusion fields in the plane. Teoriâ veroâtnostej i ee primeneniâ, Tome 40 (1995) no. 3, pp. 565-577. http://geodesic.mathdoc.fr/item/TVP_1995_40_3_a6/