Limit theorems for stochastic differential equations without after-effect
Teoriâ veroâtnostej i ee primeneniâ, Tome 40 (1995) no. 3, pp. 523-541
Cet article a éte moissonné depuis la source Math-Net.Ru
The paper studies the limit behavior of a solution of a stochastic differential equation (SDE) without after-effect when the dependence of the equation coefficients on a parameter is nonregular and an unbounded growth in the parameter is accepted at some points of $\mathbf{R}^m $.
Keywords:
nonregular dependence of the equation coefficients on the parameter, weak convergence of the modulus of an equation, equations with coefficients degenerated at the limit.
@article{TVP_1995_40_3_a3,
author = {G. L. Kulinich and M. V. Kharkova},
title = {Limit theorems for stochastic differential equations without after-effect},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {523--541},
year = {1995},
volume = {40},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1995_40_3_a3/}
}
TY - JOUR AU - G. L. Kulinich AU - M. V. Kharkova TI - Limit theorems for stochastic differential equations without after-effect JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1995 SP - 523 EP - 541 VL - 40 IS - 3 UR - http://geodesic.mathdoc.fr/item/TVP_1995_40_3_a3/ LA - ru ID - TVP_1995_40_3_a3 ER -
G. L. Kulinich; M. V. Kharkova. Limit theorems for stochastic differential equations without after-effect. Teoriâ veroâtnostej i ee primeneniâ, Tome 40 (1995) no. 3, pp. 523-541. http://geodesic.mathdoc.fr/item/TVP_1995_40_3_a3/