On reflection of continuous functions and random processes having local times
Teoriâ veroâtnostej i ee primeneniâ, Tome 40 (1995) no. 3, pp. 665-669
Voir la notice de l'article provenant de la source Math-Net.Ru
Assuming that the local time $\alpha(t,u)$, $t\in[0,\infty)$, $u\in\mathbf R$, of a real-valued continuous function $X(s)$, $s\in[0,\infty)$, is continuous in the time parameter, we show that
$$
-\min_{0\le s\le t}\min(X(s),0)=\int_{-\infty}^0\mathbf{1}(\alpha(t,v)>0)\,dv,
$$
where the function $\int_{-\infty}^01(\alpha(t,v)>0)\,dv$ is the local time for $\xi(s)=\alpha(s,X(s))$. We apply this result to random processes.
Keywords:
local time, reflection problem, Brownian motion.
@article{TVP_1995_40_3_a16,
author = {F. S. Nasyrov},
title = {On reflection of continuous functions and random processes having local times},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {665--669},
publisher = {mathdoc},
volume = {40},
number = {3},
year = {1995},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1995_40_3_a16/}
}
TY - JOUR AU - F. S. Nasyrov TI - On reflection of continuous functions and random processes having local times JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1995 SP - 665 EP - 669 VL - 40 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1995_40_3_a16/ LA - ru ID - TVP_1995_40_3_a16 ER -
F. S. Nasyrov. On reflection of continuous functions and random processes having local times. Teoriâ veroâtnostej i ee primeneniâ, Tome 40 (1995) no. 3, pp. 665-669. http://geodesic.mathdoc.fr/item/TVP_1995_40_3_a16/