The Fubini theorem for stochastic integrals with respect to $L^0$-valued random measures depending on a parameter
Teoriâ veroâtnostej i ee primeneniâ, Tome 40 (1995) no. 2, pp. 313-323
Cet article a éte moissonné depuis la source Math-Net.Ru
For a stochastic integral with respect to an $L^0$-valued random measure $\theta$ in the sense of Bichteler and Jacod, whose integrand from $L^{1,0}(\theta)$ depends measurably on a parameter in a measurable space, we establish the measurability in this parameter. In the $L^1$-valued case with a norm integrable in the parameter we prove a theorem on the rearrangement of integrals which generalizes the classical Fubini theorem. An analogous result for an $L^0$-valued measure is obtained by its prelocal reduction to an $L^1$-valued measure.
Keywords:
the Fubini theorem, $\sigma$-finite $L^p$-valued random measure, the stochastic integral process with respect to such a measure, its measurability and integrability in a parameter.
@article{TVP_1995_40_2_a5,
author = {V. A. Lebedev},
title = {The {Fubini} theorem for stochastic integrals with respect to $L^0$-valued random measures depending on a~parameter},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {313--323},
year = {1995},
volume = {40},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1995_40_2_a5/}
}
TY - JOUR AU - V. A. Lebedev TI - The Fubini theorem for stochastic integrals with respect to $L^0$-valued random measures depending on a parameter JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1995 SP - 313 EP - 323 VL - 40 IS - 2 UR - http://geodesic.mathdoc.fr/item/TVP_1995_40_2_a5/ LA - ru ID - TVP_1995_40_2_a5 ER -
%0 Journal Article %A V. A. Lebedev %T The Fubini theorem for stochastic integrals with respect to $L^0$-valued random measures depending on a parameter %J Teoriâ veroâtnostej i ee primeneniâ %D 1995 %P 313-323 %V 40 %N 2 %U http://geodesic.mathdoc.fr/item/TVP_1995_40_2_a5/ %G ru %F TVP_1995_40_2_a5
V. A. Lebedev. The Fubini theorem for stochastic integrals with respect to $L^0$-valued random measures depending on a parameter. Teoriâ veroâtnostej i ee primeneniâ, Tome 40 (1995) no. 2, pp. 313-323. http://geodesic.mathdoc.fr/item/TVP_1995_40_2_a5/