On distribution of quadratic forms in Gaussian random variables
Teoriâ veroâtnostej i ee primeneniâ, Tome 40 (1995) no. 2, pp. 301-312
Voir la notice de l'article provenant de la source Math-Net.Ru
Two-sided bounds are constructed for a density function $p(u,a)$ of a random variable $|Y-a|^2 $, where $Y$ is a Gaussian random element in a Hilbert space with zero mean. The estimates are sharp in the sense that starting from large enough $u$ the ratio of upper bound to lower bound equals 8 and does not depend on any parameters of a distribution of $|Y-a|^2$. The estimates imply two-sided bounds for probabilities $\mathbf{P}(|Y-a|>r)$
Keywords:
Gaussian measure, tail behavior, distribution of quadratic forms.
Mots-clés : noncentral $\chi^2$-distribution
Mots-clés : noncentral $\chi^2$-distribution
@article{TVP_1995_40_2_a4,
author = {G. Christoph and Yu. V. Prokhorov and V. V. Ulyanov},
title = {On distribution of quadratic forms in {Gaussian} random variables},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {301--312},
publisher = {mathdoc},
volume = {40},
number = {2},
year = {1995},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1995_40_2_a4/}
}
TY - JOUR AU - G. Christoph AU - Yu. V. Prokhorov AU - V. V. Ulyanov TI - On distribution of quadratic forms in Gaussian random variables JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1995 SP - 301 EP - 312 VL - 40 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1995_40_2_a4/ LA - ru ID - TVP_1995_40_2_a4 ER -
G. Christoph; Yu. V. Prokhorov; V. V. Ulyanov. On distribution of quadratic forms in Gaussian random variables. Teoriâ veroâtnostej i ee primeneniâ, Tome 40 (1995) no. 2, pp. 301-312. http://geodesic.mathdoc.fr/item/TVP_1995_40_2_a4/