Weakly measurable seminorms and sufficient topologies
Teoriâ veroâtnostej i ee primeneniâ, Tome 40 (1995) no. 2, pp. 453-458
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper for $F$-space $\Gamma$ with an unconditional basis, embeddable in $L^0$, a sufficient topology stronger than that known earlier is constructed in the space $\Gamma^*$. In the case when $\Gamma$ has a sign-invariant basis it is shown that the topology on $\Gamma^*$ generated by weakly measurable seminorms ($w$-measurable in the sense of Gross seminorms according to Mushtari and Chuprunov) is sufficient.
Mots-clés :
admissible and sufficient topologies, S-spaces.
Keywords: weakly measurable seminorms, cylindrical measures
Keywords: weakly measurable seminorms, cylindrical measures
@article{TVP_1995_40_2_a18,
author = {M. U. Khafizov},
title = {Weakly measurable seminorms and sufficient topologies},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {453--458},
year = {1995},
volume = {40},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1995_40_2_a18/}
}
M. U. Khafizov. Weakly measurable seminorms and sufficient topologies. Teoriâ veroâtnostej i ee primeneniâ, Tome 40 (1995) no. 2, pp. 453-458. http://geodesic.mathdoc.fr/item/TVP_1995_40_2_a18/