On the convergence of random processes generated by polyhedral approximation of convex compacts
Teoriâ veroâtnostej i ee primeneniâ, Tome 40 (1995) no. 2, pp. 438-444 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a convex compact $F$ with a boundary of class $C^2$, a probability density $f$ concentrated on $F$ and continuous in some neighborhood of the boundary $\partial F$, and a random polyhedron $\Xi_n$ that coincides with a convex hull of a sample from $n$ independent points with distribution $f$. This paper studies the asymptotic behavior of a normed random process $\eta_n$ given on the unit sphere and equal to the difference of support functions of the compact $F$ and the polyhedron $\Xi _n$. The results mentioned are formulated in terms of epiconvergence, i.e., the weak convergence of epigraphs of processes as random closed sets. If $f(x)$ does not vanish at least at one point, $x\in\partial F$, then $n\Xi_n$ has a nonzero weak epi-limit as $n\to\infty$. If $f(x)=0$ on $\partial F$, but a scalar product of a gradient of $f$ and a normal to $\partial F$ is not equal to zero identically, then the right normalization would be $n^{1/2}Xi_n$. For these cases, the distributions of the limit epigraph as a closed set in the space $S^{d-1}\times\mathbf{R}$ are obtained in the paper.
Keywords: random polyhedron, convex hull, support function, random closed set, union of random sets.
Mots-clés : epiconvergence, Poisson process
@article{TVP_1995_40_2_a16,
     author = {I. S. Molchanov},
     title = {On the convergence of random processes generated by polyhedral approximation of convex compacts},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {438--444},
     year = {1995},
     volume = {40},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1995_40_2_a16/}
}
TY  - JOUR
AU  - I. S. Molchanov
TI  - On the convergence of random processes generated by polyhedral approximation of convex compacts
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1995
SP  - 438
EP  - 444
VL  - 40
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_1995_40_2_a16/
LA  - ru
ID  - TVP_1995_40_2_a16
ER  - 
%0 Journal Article
%A I. S. Molchanov
%T On the convergence of random processes generated by polyhedral approximation of convex compacts
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1995
%P 438-444
%V 40
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_1995_40_2_a16/
%G ru
%F TVP_1995_40_2_a16
I. S. Molchanov. On the convergence of random processes generated by polyhedral approximation of convex compacts. Teoriâ veroâtnostej i ee primeneniâ, Tome 40 (1995) no. 2, pp. 438-444. http://geodesic.mathdoc.fr/item/TVP_1995_40_2_a16/