Comparison theorems for distribution functions of quadratic forms of Gaussian vectors
Teoriâ veroâtnostej i ee primeneniâ, Tome 40 (1995) no. 2, pp. 404-412
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $Q_1$ and $Q_2$ be nonnegatively definite quadratic forms of centered Gaussian random variables (r.v.'s) satisfying normalization condition $\mathbf{E}Q_1={\mathbf E}Q_2=1$. If the vector of eigenvalues of $Q_1$ majorizes that of $Q_2$, then the distribution function of $Q_1$ is less than the distribution function of $Q_2$ when their arguments exceed 2. Some statistical applications are given.
Keywords:
comparison theorem, quadratic form of r.v.'s, quadratic statistics.
@article{TVP_1995_40_2_a11,
author = {N. K. Bakirov},
title = {Comparison theorems for distribution functions of quadratic forms of {Gaussian} vectors},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {404--412},
year = {1995},
volume = {40},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1995_40_2_a11/}
}
N. K. Bakirov. Comparison theorems for distribution functions of quadratic forms of Gaussian vectors. Teoriâ veroâtnostej i ee primeneniâ, Tome 40 (1995) no. 2, pp. 404-412. http://geodesic.mathdoc.fr/item/TVP_1995_40_2_a11/