Unimprovable exponential bounds for distributions of sums of a~random number of random variables
Teoriâ veroâtnostej i ee primeneniâ, Tome 40 (1995) no. 2, pp. 260-269

Voir la notice de l'article provenant de la source Math-Net.Ru

The basic object of the study is the asymptotic behavior of $\mathbf{P}(Z_\nu>t)$ as $t\to\infty $ for sums $Z_\nu$ of random number $\nu$ of random variables $\zeta_1,\zeta_2,\dots$ . It was established in [1] that, if conditional “with respect to the past” probabilities of the events $\{\zeta_k>t\}$ are dominated by a function $\delta_1(t)$, $\mathbf{P}(\nu>t)\delta_2(t)$, and the functions $\delta_1$ and $\delta_2$ are close to power functions, then $\mathbf{P}(Z_\nu>t)$, $c=\mathrm{const}$, and this bound cannot be improved. In the present paper, we study the asymptotics of $\mathbf{P}(Z_\nu>t)$ in the case when the functions $\delta_1$ and $\delta_2$ are exponential. The nature of unimprovable bounds for $\mathbf{P}(Z_\nu>t)$ turns out in this case to be different.
Keywords: sums of random number of random variables, stopped sums, large deviations, exponential bounds.
@article{TVP_1995_40_2_a1,
     author = {A. A. Borovkov},
     title = {Unimprovable exponential bounds for distributions of sums of a~random number of random variables},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {260--269},
     publisher = {mathdoc},
     volume = {40},
     number = {2},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1995_40_2_a1/}
}
TY  - JOUR
AU  - A. A. Borovkov
TI  - Unimprovable exponential bounds for distributions of sums of a~random number of random variables
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1995
SP  - 260
EP  - 269
VL  - 40
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1995_40_2_a1/
LA  - ru
ID  - TVP_1995_40_2_a1
ER  - 
%0 Journal Article
%A A. A. Borovkov
%T Unimprovable exponential bounds for distributions of sums of a~random number of random variables
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1995
%P 260-269
%V 40
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1995_40_2_a1/
%G ru
%F TVP_1995_40_2_a1
A. A. Borovkov. Unimprovable exponential bounds for distributions of sums of a~random number of random variables. Teoriâ veroâtnostej i ee primeneniâ, Tome 40 (1995) no. 2, pp. 260-269. http://geodesic.mathdoc.fr/item/TVP_1995_40_2_a1/