Unimprovable exponential bounds for distributions of sums of a~random number of random variables
Teoriâ veroâtnostej i ee primeneniâ, Tome 40 (1995) no. 2, pp. 260-269
Voir la notice de l'article provenant de la source Math-Net.Ru
The basic object of the study is the asymptotic behavior of $\mathbf{P}(Z_\nu>t)$ as $t\to\infty $ for sums $Z_\nu$ of random number $\nu$ of random variables $\zeta_1,\zeta_2,\dots$ . It was established in [1] that, if conditional “with respect to the past” probabilities of the events $\{\zeta_k>t\}$ are dominated by a function $\delta_1(t)$, $\mathbf{P}(\nu>t)\delta_2(t)$, and the functions $\delta_1$ and $\delta_2$ are close to power functions, then $\mathbf{P}(Z_\nu>t)$, $c=\mathrm{const}$, and this bound cannot be improved. In the present paper, we study the asymptotics of $\mathbf{P}(Z_\nu>t)$ in the case when the functions $\delta_1$ and $\delta_2$ are exponential. The nature of unimprovable bounds for $\mathbf{P}(Z_\nu>t)$ turns out in this case to be different.
Keywords:
sums of random number of random variables, stopped sums, large deviations, exponential bounds.
@article{TVP_1995_40_2_a1,
author = {A. A. Borovkov},
title = {Unimprovable exponential bounds for distributions of sums of a~random number of random variables},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {260--269},
publisher = {mathdoc},
volume = {40},
number = {2},
year = {1995},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1995_40_2_a1/}
}
TY - JOUR AU - A. A. Borovkov TI - Unimprovable exponential bounds for distributions of sums of a~random number of random variables JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1995 SP - 260 EP - 269 VL - 40 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1995_40_2_a1/ LA - ru ID - TVP_1995_40_2_a1 ER -
A. A. Borovkov. Unimprovable exponential bounds for distributions of sums of a~random number of random variables. Teoriâ veroâtnostej i ee primeneniâ, Tome 40 (1995) no. 2, pp. 260-269. http://geodesic.mathdoc.fr/item/TVP_1995_40_2_a1/