Rate of convergence in the central limit theorem for fields of associated random variables
Teoriâ veroâtnostej i ee primeneniâ, Tome 40 (1995) no. 1, pp. 165-174

Voir la notice de l'article provenant de la source Math-Net.Ru

The rate of convergence of standardized sums $S(V)=\sum_{j\in V}X_j$ to the normal law is established for a field $\{X_j,j\in\mathbf Z^d\}$ of associated random variables and arbitrarily increasing finite sets $V\subset\mathbf Z^d$. An exponential type of decay is assumed for the Cox–Grimmet coefficient $u(\,\cdot\,)$ as well as $\sup_j\mathbf E|X_j|^s\infty$ for some $s>2$.
Keywords: random field on $\mathbf{Z}^d $, sums of dependent random variables, association (FKG-inequalities), rate of convergence in CLT.
@article{TVP_1995_40_1_a9,
     author = {A. V. Bulinski},
     title = {Rate of convergence in the central limit theorem for fields of associated random variables},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {165--174},
     publisher = {mathdoc},
     volume = {40},
     number = {1},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1995_40_1_a9/}
}
TY  - JOUR
AU  - A. V. Bulinski
TI  - Rate of convergence in the central limit theorem for fields of associated random variables
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1995
SP  - 165
EP  - 174
VL  - 40
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1995_40_1_a9/
LA  - ru
ID  - TVP_1995_40_1_a9
ER  - 
%0 Journal Article
%A A. V. Bulinski
%T Rate of convergence in the central limit theorem for fields of associated random variables
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1995
%P 165-174
%V 40
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1995_40_1_a9/
%G ru
%F TVP_1995_40_1_a9
A. V. Bulinski. Rate of convergence in the central limit theorem for fields of associated random variables. Teoriâ veroâtnostej i ee primeneniâ, Tome 40 (1995) no. 1, pp. 165-174. http://geodesic.mathdoc.fr/item/TVP_1995_40_1_a9/