Rate of convergence in the central limit theorem for fields of associated random variables
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 40 (1995) no. 1, pp. 165-174
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The rate of convergence of standardized sums $S(V)=\sum_{j\in V}X_j$ to the normal law is established for a field $\{X_j,j\in\mathbf Z^d\}$ of associated random variables and arbitrarily increasing finite sets $V\subset\mathbf Z^d$. An exponential type of decay is assumed for the Cox–Grimmet coefficient $u(\,\cdot\,)$ as well as $\sup_j\mathbf E|X_j|^s\infty$ for some $s>2$.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
random field on $\mathbf{Z}^d $, sums of dependent random variables, association (FKG-inequalities), rate of convergence in CLT.
                    
                  
                
                
                @article{TVP_1995_40_1_a9,
     author = {A. V. Bulinski},
     title = {Rate of convergence in the central limit theorem for fields of associated random variables},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {165--174},
     publisher = {mathdoc},
     volume = {40},
     number = {1},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1995_40_1_a9/}
}
                      
                      
                    TY - JOUR AU - A. V. Bulinski TI - Rate of convergence in the central limit theorem for fields of associated random variables JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1995 SP - 165 EP - 174 VL - 40 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1995_40_1_a9/ LA - ru ID - TVP_1995_40_1_a9 ER -
A. V. Bulinski. Rate of convergence in the central limit theorem for fields of associated random variables. Teoriâ veroâtnostej i ee primeneniâ, Tome 40 (1995) no. 1, pp. 165-174. http://geodesic.mathdoc.fr/item/TVP_1995_40_1_a9/
