On the strong law of large numbers for random quadratic forms
Teoriâ veroâtnostej i ee primeneniâ, Tome 40 (1995) no. 1, pp. 125-142
Cet article a éte moissonné depuis la source Math-Net.Ru
The paper establishes strong laws of large numbers for the quadratic forms $Q_n(X,X)=\sum_{i=1}^n\sum_{j=1}^na_{ij}X_iX_j$ and the bilinear forms $Q_n(X,Y)=\sum_{i=1}^n\sum_{j=1}^na_{ij}X_iY_j$, where $X=(X_n)$ is a sequence of independent random variables and $Y=(Y_n)$ is an independent copy of it. In the case of i.i.d. symmetric $p$-stable random variables $X_n$ we derive necessary and sufficient conditions for the strong laws of $Q_n(X,X)$ and $Q_n(X,Y)$ for a given nondecreasing sequence $(b_n)$ of normalizing constants. For these classes of variables $(X_n)$ the strong laws $\lim b_n^{-1}Q_n(X,X)=0$ a.s. and $\lim b_n^{-1}Q_n(X,Y)=0$ a.s. are shown to be equivalent provided that $a_{ii}=0$ for all $i$.
Keywords:
quadratic forms, bilinear forms, strong law of large numbers, Prokhorov-type characterization, tail probabilities.
Mots-clés : p-stable random variables, domains of partial attraction
Mots-clés : p-stable random variables, domains of partial attraction
@article{TVP_1995_40_1_a6,
author = {T. Mikosch},
title = {On the strong law of large numbers for random quadratic forms},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {125--142},
year = {1995},
volume = {40},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_1995_40_1_a6/}
}
T. Mikosch. On the strong law of large numbers for random quadratic forms. Teoriâ veroâtnostej i ee primeneniâ, Tome 40 (1995) no. 1, pp. 125-142. http://geodesic.mathdoc.fr/item/TVP_1995_40_1_a6/