A small deviation theorem for independent random variables
Teoriâ veroâtnostej i ee primeneniâ, Tome 40 (1995) no. 1, pp. 225-235

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\{X_n,\,n\ge 1\}$ be a sequence of independent, not necessarily identically distributed random variables. Put $S_k(n)=\sum_{i=1+k}^{n+k}X_i$. A small deviation theorem, i.e., the asymptotic bound of $\mathbf P(\max_{i\le n}|S_k (i)|\le x_{k,n})$ is obtained under a uniform Lindeberg's condition.
Keywords: small deviation, partial sums, independent random variables.
@article{TVP_1995_40_1_a20,
     author = {Q. M. Shao},
     title = {A small deviation theorem for independent random variables},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {225--235},
     publisher = {mathdoc},
     volume = {40},
     number = {1},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_1995_40_1_a20/}
}
TY  - JOUR
AU  - Q. M. Shao
TI  - A small deviation theorem for independent random variables
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1995
SP  - 225
EP  - 235
VL  - 40
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1995_40_1_a20/
LA  - en
ID  - TVP_1995_40_1_a20
ER  - 
%0 Journal Article
%A Q. M. Shao
%T A small deviation theorem for independent random variables
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1995
%P 225-235
%V 40
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1995_40_1_a20/
%G en
%F TVP_1995_40_1_a20
Q. M. Shao. A small deviation theorem for independent random variables. Teoriâ veroâtnostej i ee primeneniâ, Tome 40 (1995) no. 1, pp. 225-235. http://geodesic.mathdoc.fr/item/TVP_1995_40_1_a20/