Marcinkiewicz–Zygmund laws for Banach space valued random variables with multidimensional parameters
Teoriâ veroâtnostej i ee primeneniâ, Tome 40 (1995) no. 1, pp. 213-219
Cet article a éte moissonné depuis la source Math-Net.Ru
For finite-dimensional array $X(m)=X(m_1,\dots,m_k)$ of independent identically distributed Banach space valued random variables we consider sums $S(n)=S(n_1,\dots,n_k)$ of $X(m)$ over $m_i\in\{1,\dots,n_i\}$ $(i-1,\dots,k)$. Under some conditions on individual random variable $X$ and on the geometry of Banach space the strong law of large numbers for $S(n)$ and estimates for large deviations as $\max n_i\to\infty$ are obtained.
Keywords:
Banach space valued random Variables, law of large numbers for multidimensional sums, large deviation probabilities.
@article{TVP_1995_40_1_a18,
author = {Nguyen Van Giang},
title = {Marcinkiewicz{\textendash}Zygmund laws for {Banach} space valued random variables with multidimensional parameters},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {213--219},
year = {1995},
volume = {40},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_1995_40_1_a18/}
}
TY - JOUR AU - Nguyen Van Giang TI - Marcinkiewicz–Zygmund laws for Banach space valued random variables with multidimensional parameters JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1995 SP - 213 EP - 219 VL - 40 IS - 1 UR - http://geodesic.mathdoc.fr/item/TVP_1995_40_1_a18/ LA - en ID - TVP_1995_40_1_a18 ER -
Nguyen Van Giang. Marcinkiewicz–Zygmund laws for Banach space valued random variables with multidimensional parameters. Teoriâ veroâtnostej i ee primeneniâ, Tome 40 (1995) no. 1, pp. 213-219. http://geodesic.mathdoc.fr/item/TVP_1995_40_1_a18/