Marcinkiewicz–Zygmund laws for Banach space valued random variables with multidimensional parameters
Teoriâ veroâtnostej i ee primeneniâ, Tome 40 (1995) no. 1, pp. 213-219 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For finite-dimensional array $X(m)=X(m_1,\dots,m_k)$ of independent identically distributed Banach space valued random variables we consider sums $S(n)=S(n_1,\dots,n_k)$ of $X(m)$ over $m_i\in\{1,\dots,n_i\}$ $(i-1,\dots,k)$. Under some conditions on individual random variable $X$ and on the geometry of Banach space the strong law of large numbers for $S(n)$ and estimates for large deviations as $\max n_i\to\infty$ are obtained.
Keywords: Banach space valued random Variables, law of large numbers for multidimensional sums, large deviation probabilities.
@article{TVP_1995_40_1_a18,
     author = {Nguyen Van Giang},
     title = {Marcinkiewicz{\textendash}Zygmund laws for {Banach} space valued random variables with multidimensional parameters},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {213--219},
     year = {1995},
     volume = {40},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_1995_40_1_a18/}
}
TY  - JOUR
AU  - Nguyen Van Giang
TI  - Marcinkiewicz–Zygmund laws for Banach space valued random variables with multidimensional parameters
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1995
SP  - 213
EP  - 219
VL  - 40
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_1995_40_1_a18/
LA  - en
ID  - TVP_1995_40_1_a18
ER  - 
%0 Journal Article
%A Nguyen Van Giang
%T Marcinkiewicz–Zygmund laws for Banach space valued random variables with multidimensional parameters
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1995
%P 213-219
%V 40
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_1995_40_1_a18/
%G en
%F TVP_1995_40_1_a18
Nguyen Van Giang. Marcinkiewicz–Zygmund laws for Banach space valued random variables with multidimensional parameters. Teoriâ veroâtnostej i ee primeneniâ, Tome 40 (1995) no. 1, pp. 213-219. http://geodesic.mathdoc.fr/item/TVP_1995_40_1_a18/