On efficient estimation of smooth functionals
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 40 (1995) no. 1, pp. 199-205
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The problem of the estimation of smooth functionals $\Lambda$ defined on a set of densities $\mathcal{F}$ is considered. A simple “plug-in” estimator $\Lambda(\widehat f_n)$ is shown to be asymptotically efficient in the sense of Levit [5], [6], where $\hat f_n$ is an “undersmoothed” kernel estimate of the density $f$. The approach is compared to others in the literature.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
independent observations, a “plug-in” estimator, a kernel estimator, a locally asymptotically minimax estimator, a smooth functional, asymptotic efficiency.
                    
                    
                    
                  
                
                
                @article{TVP_1995_40_1_a16,
     author = {L. Goldstein and R. Khas'minskii},
     title = {On efficient estimation of smooth functionals},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {199--205},
     publisher = {mathdoc},
     volume = {40},
     number = {1},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_1995_40_1_a16/}
}
                      
                      
                    L. Goldstein; R. Khas'minskii. On efficient estimation of smooth functionals. Teoriâ veroâtnostej i ee primeneniâ, Tome 40 (1995) no. 1, pp. 199-205. http://geodesic.mathdoc.fr/item/TVP_1995_40_1_a16/
