On probability distributions on the field of $p$-adic numbers
Teoriâ veroâtnostej i ee primeneniâ, Tome 40 (1995) no. 1, pp. 189-192
Cet article a éte moissonné depuis la source Math-Net.Ru
It is shown that many naturally defined probability distributions can be realized as distributions on the field of $p$-adic numbers. Following R. Mises and E. Tornier we consider first the stochastic experiment whose elementary outcome is the result of the infinite sequence of tossings of a symmetric coin. It is proved that the distribution corresponding to this experiment is the Haar distribution on the ring of $p$-adic integers. Then we consider the convergence of series of random variables with rational values on the field of $p$-adic numbers. It is shown that the series converge a.s. on the field of $p$-adic numbers but diverge on the field of real numbers.
Mots-clés :
Tornier distribution
Keywords: $p$-adic numbers, Haar distribution.
Keywords: $p$-adic numbers, Haar distribution.
@article{TVP_1995_40_1_a14,
author = {A. Yu. Khrennikov},
title = {On probability distributions on the field of $p$-adic numbers},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {189--192},
year = {1995},
volume = {40},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1995_40_1_a14/}
}
A. Yu. Khrennikov. On probability distributions on the field of $p$-adic numbers. Teoriâ veroâtnostej i ee primeneniâ, Tome 40 (1995) no. 1, pp. 189-192. http://geodesic.mathdoc.fr/item/TVP_1995_40_1_a14/