On probability distributions on the field of $p$-adic numbers
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 40 (1995) no. 1, pp. 189-192
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			It is shown that many naturally defined probability distributions can be realized as distributions on the field of $p$-adic numbers. Following R. Mises and E. Tornier we consider first the stochastic experiment whose elementary outcome is the result of the infinite sequence of tossings of a symmetric coin. It is proved that the distribution corresponding to this experiment is the Haar distribution on the ring of $p$-adic integers. Then we consider the convergence of series of random variables with rational values on the field of $p$-adic numbers. It is shown that the series converge a.s. on the field of $p$-adic numbers but diverge on the field of real numbers.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Mots-clés : 
Tornier distribution
Keywords: $p$-adic numbers, Haar distribution.
                    
                  
                
                
                Keywords: $p$-adic numbers, Haar distribution.
@article{TVP_1995_40_1_a14,
     author = {A. Yu. Khrennikov},
     title = {On probability distributions on the field of $p$-adic numbers},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {189--192},
     publisher = {mathdoc},
     volume = {40},
     number = {1},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1995_40_1_a14/}
}
                      
                      
                    A. Yu. Khrennikov. On probability distributions on the field of $p$-adic numbers. Teoriâ veroâtnostej i ee primeneniâ, Tome 40 (1995) no. 1, pp. 189-192. http://geodesic.mathdoc.fr/item/TVP_1995_40_1_a14/
