A~forward interpolation equation of a~semimartingale by observations over a~point process
Teoriâ veroâtnostej i ee primeneniâ, Tome 40 (1995) no. 1, pp. 177-180
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $(\Omega,\mathcal{F}_\infty,\mathbf{P})$ be a complete probability space, and let $(\mathcal{F}_t )$, $t\in\mathbf{R}_ + $, be a nondecreasing right-continuous family of sub-$\sigma $-algebras of $\mathcal{F}_\infty$ completed by sets from $\mathcal{F}_\infty$ of zero probability. A two-dimensional partially observable stochastic process is given on the probability space $(\Omega,\mathcal{F}_\infty,\mathbf{P})$, where $\theta _t $ is an $(\mathcal{F}_t )$-adapted, $0\leq t\infty$, unobservable component and $(T_n ,X_n)$, $n \ge 1$, is an observable one. We consider the problem of optimal interpolation, which consists of finding an optimal mean square estimate $\theta_s$ from the observations of the process $(T_n,X_n)$ on $[0,t]$, $t\geq s$. This paper contains a deduction of an equation of optimal nonlinear interpolation on the basis of an equation of optimal nonlinear filtering.
Keywords:
probability space, $\sigma $-algebra, point process, jump measure of a process, semimartingale, drift, ans measure, compensator, filtering
Mots-clés : filtration of observations, martingale, Dolé, interpolation.
Mots-clés : filtration of observations, martingale, Dolé, interpolation.
@article{TVP_1995_40_1_a11,
author = {N. V. Kvashko},
title = {A~forward interpolation equation of a~semimartingale by observations over a~point process},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {177--180},
publisher = {mathdoc},
volume = {40},
number = {1},
year = {1995},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1995_40_1_a11/}
}
TY - JOUR AU - N. V. Kvashko TI - A~forward interpolation equation of a~semimartingale by observations over a~point process JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1995 SP - 177 EP - 180 VL - 40 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1995_40_1_a11/ LA - ru ID - TVP_1995_40_1_a11 ER -
N. V. Kvashko. A~forward interpolation equation of a~semimartingale by observations over a~point process. Teoriâ veroâtnostej i ee primeneniâ, Tome 40 (1995) no. 1, pp. 177-180. http://geodesic.mathdoc.fr/item/TVP_1995_40_1_a11/