On time dependency in a simple random walk
Teoriâ veroâtnostej i ee primeneniâ, Tome 40 (1995) no. 1, pp. 175-177
Cet article a éte moissonné depuis la source Math-Net.Ru
It is shown that the set of integer points visited by a one-dimensional simple random walk only once in $t$ steps contains points which do not belong to the boundary of all visited points with probability behaving like $\sim 2/\log t$ as $t\to\infty$.
Keywords:
simple random walk, generating functions.
@article{TVP_1995_40_1_a10,
author = {V. I. Kabanovich},
title = {On time dependency in a simple random walk},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {175--177},
year = {1995},
volume = {40},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1995_40_1_a10/}
}
V. I. Kabanovich. On time dependency in a simple random walk. Teoriâ veroâtnostej i ee primeneniâ, Tome 40 (1995) no. 1, pp. 175-177. http://geodesic.mathdoc.fr/item/TVP_1995_40_1_a10/