Itô formula for an extended stochastic integral with nonanticipating kernel
Teoriâ veroâtnostej i ee primeneniâ, Tome 39 (1994) no. 4, pp. 743-765

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $U_t =\int _0^1 u_s \mu (t,s)\delta W_s $ be an extended stochastic integral with a nonrandom anticipating kernel $\mu ( \,\cdot\, {,}\, \cdot\, )$. This paper gives the conditions of continuity for the process $U_t $ (§ 3), computes the quadratic variation (§ 4), and proves the Itô formula (§ 5) from which the formula for Brownian partial derivatives is deduced. With the help of the established Ito formula the probabilistic solution of some integro-differential equation is obtained (Example 3).
Keywords: extended stochastic integral with anticipating kernel, quadratic variation, randomized time.
Mots-clés : Itô formula
@article{TVP_1994_39_4_a6,
     author = {N. V. Norin},
     title = {It\^o formula for an extended stochastic integral with nonanticipating kernel},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {743--765},
     publisher = {mathdoc},
     volume = {39},
     number = {4},
     year = {1994},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1994_39_4_a6/}
}
TY  - JOUR
AU  - N. V. Norin
TI  - Itô formula for an extended stochastic integral with nonanticipating kernel
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1994
SP  - 743
EP  - 765
VL  - 39
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1994_39_4_a6/
LA  - ru
ID  - TVP_1994_39_4_a6
ER  - 
%0 Journal Article
%A N. V. Norin
%T Itô formula for an extended stochastic integral with nonanticipating kernel
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1994
%P 743-765
%V 39
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1994_39_4_a6/
%G ru
%F TVP_1994_39_4_a6
N. V. Norin. Itô formula for an extended stochastic integral with nonanticipating kernel. Teoriâ veroâtnostej i ee primeneniâ, Tome 39 (1994) no. 4, pp. 743-765. http://geodesic.mathdoc.fr/item/TVP_1994_39_4_a6/