Poisson approximation for the number of long match patterns in random sequences
Teoriâ veroâtnostej i ee primeneniâ, Tome 39 (1994) no. 4, pp. 731-742

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X_1 , \ldots ,X_m ,Y_1 , \ldots ,Y_n $ be independent identically distributed random variables with discrete state space. We estimate the rate of convergence in the limit theorems for the number of long match patterns and for the length of the longest match pattern in random sequences $X_1 , \ldots ,X_m ,Y_1 , \ldots ,Y_n $. The results improve the corresponding ones received by Zubkov–Mikhailov, Arratia–Gordon–Waterman, and others.
Mots-clés : Poisson approximation
Keywords: Chen–Stein method.
@article{TVP_1994_39_4_a5,
     author = {S. Yu. Novak},
     title = {Poisson approximation for the number of long match patterns in random sequences},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {731--742},
     publisher = {mathdoc},
     volume = {39},
     number = {4},
     year = {1994},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1994_39_4_a5/}
}
TY  - JOUR
AU  - S. Yu. Novak
TI  - Poisson approximation for the number of long match patterns in random sequences
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1994
SP  - 731
EP  - 742
VL  - 39
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1994_39_4_a5/
LA  - ru
ID  - TVP_1994_39_4_a5
ER  - 
%0 Journal Article
%A S. Yu. Novak
%T Poisson approximation for the number of long match patterns in random sequences
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1994
%P 731-742
%V 39
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1994_39_4_a5/
%G ru
%F TVP_1994_39_4_a5
S. Yu. Novak. Poisson approximation for the number of long match patterns in random sequences. Teoriâ veroâtnostej i ee primeneniâ, Tome 39 (1994) no. 4, pp. 731-742. http://geodesic.mathdoc.fr/item/TVP_1994_39_4_a5/