Integral transforms with infinitely divisible kernels
Teoriâ veroâtnostej i ee primeneniâ, Tome 39 (1994) no. 4, pp. 856-863
Voir la notice de l'article provenant de la source Math-Net.Ru
Given $r$ characteristic functions $f_1 (u), \ldots ,f_r (u)$, none of which is identically equal to one, it is shown that the integral transform
$$
\int_0^\infty \cdots \int_0^\infty {\left( {\prod\limits_{j = 1}^r {fj(u_j )^{s_j } } } \right)\,dF(s_1 , \ldots ,s_r )}
$$
of the joint distribution function $F$ of $r$ non-negative random variables can be defined over a nonempty domain of natural numbers and it uniquely determines $F$. This result is used to obtain the converse of a multivariate version of a transfer theorem due to Gnedenko and Fahim, thus extending a result of Szasz and Frajeris in the univariate case. An application is also made to Lévy processes.
Keywords:
intergral transform, infinitely divisible, vector of random sums, the Lévy process.
@article{TVP_1994_39_4_a18,
author = {M. Finkelstein and S. Scheiberg and H. G. Tucker},
title = {Integral transforms with infinitely divisible kernels},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {856--863},
publisher = {mathdoc},
volume = {39},
number = {4},
year = {1994},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_1994_39_4_a18/}
}
TY - JOUR AU - M. Finkelstein AU - S. Scheiberg AU - H. G. Tucker TI - Integral transforms with infinitely divisible kernels JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1994 SP - 856 EP - 863 VL - 39 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1994_39_4_a18/ LA - en ID - TVP_1994_39_4_a18 ER -
M. Finkelstein; S. Scheiberg; H. G. Tucker. Integral transforms with infinitely divisible kernels. Teoriâ veroâtnostej i ee primeneniâ, Tome 39 (1994) no. 4, pp. 856-863. http://geodesic.mathdoc.fr/item/TVP_1994_39_4_a18/