Markov functionals of an ergodic Markov process
Teoriâ veroâtnostej i ee primeneniâ, Tome 39 (1994) no. 3, pp. 618-626
Voir la notice de l'article provenant de la source Math-Net.Ru
We say that a process $(\xi(t))_{t\ge 0}$ is a Markov functional of a basic homogeneous Markov process $(X(t))_{t\ge 0}$ if the pair $(X(t),\xi(t))_{t\ge 0}$ is a Markov process. In the paper a sequence of Markov functionals $(\xi_n(t))_{t\ge 0}$ of the basic process $(X(t))_{t\ge 0}$, which is degenerate in the limit, is considered and the limit behavior of the distribution of the pair $(X(t),\xi(t))_{t\ge 0}$ is studied as $n\to\infty$.
Keywords:
homogeneous Markov process, Markov functionals, additive functionals, multiplicative functionals, dynamic systems under random effect
Mots-clés : invariant distributions.
Mots-clés : invariant distributions.
@article{TVP_1994_39_3_a9,
author = {D. Alimov},
title = {Markov functionals of an ergodic {Markov} process},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {618--626},
publisher = {mathdoc},
volume = {39},
number = {3},
year = {1994},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1994_39_3_a9/}
}
D. Alimov. Markov functionals of an ergodic Markov process. Teoriâ veroâtnostej i ee primeneniâ, Tome 39 (1994) no. 3, pp. 618-626. http://geodesic.mathdoc.fr/item/TVP_1994_39_3_a9/