Markov functionals of an ergodic Markov process
Teoriâ veroâtnostej i ee primeneniâ, Tome 39 (1994) no. 3, pp. 618-626

Voir la notice de l'article provenant de la source Math-Net.Ru

We say that a process $(\xi(t))_{t\ge 0}$ is a Markov functional of a basic homogeneous Markov process $(X(t))_{t\ge 0}$ if the pair $(X(t),\xi(t))_{t\ge 0}$ is a Markov process. In the paper a sequence of Markov functionals $(\xi_n(t))_{t\ge 0}$ of the basic process $(X(t))_{t\ge 0}$, which is degenerate in the limit, is considered and the limit behavior of the distribution of the pair $(X(t),\xi(t))_{t\ge 0}$ is studied as $n\to\infty$.
Keywords: homogeneous Markov process, Markov functionals, additive functionals, multiplicative functionals, dynamic systems under random effect
Mots-clés : invariant distributions.
@article{TVP_1994_39_3_a9,
     author = {D. Alimov},
     title = {Markov functionals of an ergodic {Markov} process},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {618--626},
     publisher = {mathdoc},
     volume = {39},
     number = {3},
     year = {1994},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1994_39_3_a9/}
}
TY  - JOUR
AU  - D. Alimov
TI  - Markov functionals of an ergodic Markov process
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1994
SP  - 618
EP  - 626
VL  - 39
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1994_39_3_a9/
LA  - ru
ID  - TVP_1994_39_3_a9
ER  - 
%0 Journal Article
%A D. Alimov
%T Markov functionals of an ergodic Markov process
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1994
%P 618-626
%V 39
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1994_39_3_a9/
%G ru
%F TVP_1994_39_3_a9
D. Alimov. Markov functionals of an ergodic Markov process. Teoriâ veroâtnostej i ee primeneniâ, Tome 39 (1994) no. 3, pp. 618-626. http://geodesic.mathdoc.fr/item/TVP_1994_39_3_a9/