On spectral representation of multivariate stable processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 39 (1994) no. 3, pp. 605-617

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X(t)$, $t\in\mathbf{R}$, be a symmetric $\alpha$-stable process with independent increments, taking values in $\mathbf{R}^n$. Let $\mathcal{A}=\overline{\operatorname{sp}}\{X(t)-X(s),\,t,s\in\mathbf{R}\}$. Each $Y\in\mathcal{A}$ is a stable vector, and $$ \mathbf{E}\exp(i\gamma\cdot Y)=\exp\left(-\int_S |\langle\gamma,s\rangle|^\alpha\,d\Gamma_Y(s)\right), $$ where $S$ is a unit sphere in $\mathbf{R}^n$. In this work we prove that there is a unique bimeasure $\pi(\cdot,\cdot)$ on $\mathcal{B}(\mathbf{R})\times\mathcal{B}(S)$ such that for each $Y\in\mathcal{A}$ there is a function $g\in L^\alpha(\pi(\cdot,\mathbf{R}^n))$ such that $$ \Gamma_Y(\cdot)=\int|g(t)|^\alpha\pi(dt,\cdot). $$ Some applications of this representation are also discussed.
Keywords: multivariate stable process, independent increments, spectral representation, bimeasure, spectral measure, symmetric measure.
@article{TVP_1994_39_3_a8,
     author = {A. Soltani},
     title = {On spectral representation of multivariate stable processes},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {605--617},
     publisher = {mathdoc},
     volume = {39},
     number = {3},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_1994_39_3_a8/}
}
TY  - JOUR
AU  - A. Soltani
TI  - On spectral representation of multivariate stable processes
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1994
SP  - 605
EP  - 617
VL  - 39
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1994_39_3_a8/
LA  - en
ID  - TVP_1994_39_3_a8
ER  - 
%0 Journal Article
%A A. Soltani
%T On spectral representation of multivariate stable processes
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1994
%P 605-617
%V 39
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1994_39_3_a8/
%G en
%F TVP_1994_39_3_a8
A. Soltani. On spectral representation of multivariate stable processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 39 (1994) no. 3, pp. 605-617. http://geodesic.mathdoc.fr/item/TVP_1994_39_3_a8/