Continual analogues of random polynomials that are orthogonal on a~circle
Teoriâ veroâtnostej i ee primeneniâ, Tome 39 (1994) no. 3, pp. 588-604

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper obtains conditions providing absolute continuity almost surely for the spectral measure of the corresponding random differential operators for a class of canonical systems of ordinary differential equations with random coefficients. Estimates for the densities of the spectral measures are given. Corollaries corresponding to the deterministic case are formulated. Systems of stochastic differential equations with similar properties are considered.
Keywords: random ordinary differential operator, spectral measure, absolutely continuous spectrum, Krein's canonical differential system, stochastic differential equation.
@article{TVP_1994_39_3_a7,
     author = {A. V. Teplyaev},
     title = {Continual analogues of random polynomials that are orthogonal on a~circle},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {588--604},
     publisher = {mathdoc},
     volume = {39},
     number = {3},
     year = {1994},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1994_39_3_a7/}
}
TY  - JOUR
AU  - A. V. Teplyaev
TI  - Continual analogues of random polynomials that are orthogonal on a~circle
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1994
SP  - 588
EP  - 604
VL  - 39
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1994_39_3_a7/
LA  - ru
ID  - TVP_1994_39_3_a7
ER  - 
%0 Journal Article
%A A. V. Teplyaev
%T Continual analogues of random polynomials that are orthogonal on a~circle
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1994
%P 588-604
%V 39
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1994_39_3_a7/
%G ru
%F TVP_1994_39_3_a7
A. V. Teplyaev. Continual analogues of random polynomials that are orthogonal on a~circle. Teoriâ veroâtnostej i ee primeneniâ, Tome 39 (1994) no. 3, pp. 588-604. http://geodesic.mathdoc.fr/item/TVP_1994_39_3_a7/