Minimax testing of hypotheses on the distribution density for ellipsoids in~$l_p$
Teoriâ veroâtnostej i ee primeneniâ, Tome 39 (1994) no. 3, pp. 530-553

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $x_1,\dots,x_N$ be an independent sample with distribution density $f(x)$. A minimax problem of testing a simple hypothesis $f=f_0$ against a complex alternative $f\ne f_\theta$, $\theta\in\Phi_{N,p}^1$, is considered (see Definition in § 1). Asymptotic formulas for error probabilities are obtained which correspond to asymptotic minimax sequences of tests under weaker constraints on the, form of the sets $\Phi_{N,p}^1$ than studied in earlier works.
Keywords: test of hypotheses on the distribution density, complex alternative, minimax approach, asymptotic minimax tests.
@article{TVP_1994_39_3_a4,
     author = {Yu. I. Ingster},
     title = {Minimax testing of hypotheses on the distribution density for ellipsoids in~$l_p$},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {530--553},
     publisher = {mathdoc},
     volume = {39},
     number = {3},
     year = {1994},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1994_39_3_a4/}
}
TY  - JOUR
AU  - Yu. I. Ingster
TI  - Minimax testing of hypotheses on the distribution density for ellipsoids in~$l_p$
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1994
SP  - 530
EP  - 553
VL  - 39
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1994_39_3_a4/
LA  - ru
ID  - TVP_1994_39_3_a4
ER  - 
%0 Journal Article
%A Yu. I. Ingster
%T Minimax testing of hypotheses on the distribution density for ellipsoids in~$l_p$
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1994
%P 530-553
%V 39
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1994_39_3_a4/
%G ru
%F TVP_1994_39_3_a4
Yu. I. Ingster. Minimax testing of hypotheses on the distribution density for ellipsoids in~$l_p$. Teoriâ veroâtnostej i ee primeneniâ, Tome 39 (1994) no. 3, pp. 530-553. http://geodesic.mathdoc.fr/item/TVP_1994_39_3_a4/