Minimax testing of hypotheses on the distribution density for ellipsoids in~$l_p$
Teoriâ veroâtnostej i ee primeneniâ, Tome 39 (1994) no. 3, pp. 530-553
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $x_1,\dots,x_N$ be an independent sample with distribution density $f(x)$. A minimax problem of testing a simple hypothesis $f=f_0$ against a complex alternative $f\ne f_\theta$, $\theta\in\Phi_{N,p}^1$, is considered (see Definition in § 1). Asymptotic formulas for error probabilities are obtained which correspond to asymptotic minimax sequences of tests under weaker constraints on the, form of the sets $\Phi_{N,p}^1$ than studied in earlier works.
Keywords:
test of hypotheses on the distribution density, complex alternative, minimax approach, asymptotic minimax tests.
@article{TVP_1994_39_3_a4,
author = {Yu. I. Ingster},
title = {Minimax testing of hypotheses on the distribution density for ellipsoids in~$l_p$},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {530--553},
publisher = {mathdoc},
volume = {39},
number = {3},
year = {1994},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1994_39_3_a4/}
}
TY - JOUR AU - Yu. I. Ingster TI - Minimax testing of hypotheses on the distribution density for ellipsoids in~$l_p$ JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1994 SP - 530 EP - 553 VL - 39 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1994_39_3_a4/ LA - ru ID - TVP_1994_39_3_a4 ER -
Yu. I. Ingster. Minimax testing of hypotheses on the distribution density for ellipsoids in~$l_p$. Teoriâ veroâtnostej i ee primeneniâ, Tome 39 (1994) no. 3, pp. 530-553. http://geodesic.mathdoc.fr/item/TVP_1994_39_3_a4/