Minimax nonparametric testing of hypotheses on the distribution density
Teoriâ veroâtnostej i ee primeneniâ, Tome 39 (1994) no. 3, pp. 488-512

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X_1,\dots,X_n$ be independent identically distributed random variables having unknown density $f(x)$ in $L_2(\nu)$. The problem consists in testing the hypothesis $f(x)=p(x)$ against the alternative that $f(x)$ belongs to an ellipsoid in $L_2(\nu)$ from which a sphere with center at the point $p(x)$ is removed. To solve the problem we construct an asymptotically minimax sequence of tests. As an example the case where the ellipsoid is a sphere in a Sobolev space is considered.
Keywords: nonparametric testing of hypotheses, goodness-of-fit test, nonparametric set of alternatives, asymptotically minimax tests, optimal rate of convergence, testing hypotheses about the density of a distribution.
@article{TVP_1994_39_3_a2,
     author = {M. S. Ermakov},
     title = {Minimax nonparametric testing of hypotheses on the distribution density},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {488--512},
     publisher = {mathdoc},
     volume = {39},
     number = {3},
     year = {1994},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1994_39_3_a2/}
}
TY  - JOUR
AU  - M. S. Ermakov
TI  - Minimax nonparametric testing of hypotheses on the distribution density
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1994
SP  - 488
EP  - 512
VL  - 39
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1994_39_3_a2/
LA  - ru
ID  - TVP_1994_39_3_a2
ER  - 
%0 Journal Article
%A M. S. Ermakov
%T Minimax nonparametric testing of hypotheses on the distribution density
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1994
%P 488-512
%V 39
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1994_39_3_a2/
%G ru
%F TVP_1994_39_3_a2
M. S. Ermakov. Minimax nonparametric testing of hypotheses on the distribution density. Teoriâ veroâtnostej i ee primeneniâ, Tome 39 (1994) no. 3, pp. 488-512. http://geodesic.mathdoc.fr/item/TVP_1994_39_3_a2/