On the support of the solutions of stochastic differential equations
Teoriâ veroâtnostej i ee primeneniâ, Tome 39 (1994) no. 3, pp. 649-653

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $x=(x(t))_{t\ge 0}$ be a solution of stochastic differential equation (1.1m) generated by a continuous semimartingale and let $x^\omega=(x^\omega(t))_{t\ge 0}$ be a solution of ordinary differential equation (1.1w) generated by absolutely continuous functions The paper generalizing the Strook and Varadhan result [15] shows that the topological support of distributions of the process $(x(t))_{t\ge 0}$ coincides with the closure of the solutions set $\{X^\omega:\omega \text{ are absolutely continuous functions }\}$.
Keywords: stochastic and ordinary differential equations, topological support of distributions of a process, strong solutions of stochastic equations, semimartingales.
@article{TVP_1994_39_3_a13,
     author = {I. Gy\"ongy},
     title = {On the support of the solutions of stochastic differential equations},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {649--653},
     publisher = {mathdoc},
     volume = {39},
     number = {3},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_1994_39_3_a13/}
}
TY  - JOUR
AU  - I. Gyöngy
TI  - On the support of the solutions of stochastic differential equations
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1994
SP  - 649
EP  - 653
VL  - 39
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1994_39_3_a13/
LA  - en
ID  - TVP_1994_39_3_a13
ER  - 
%0 Journal Article
%A I. Gyöngy
%T On the support of the solutions of stochastic differential equations
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1994
%P 649-653
%V 39
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1994_39_3_a13/
%G en
%F TVP_1994_39_3_a13
I. Gyöngy. On the support of the solutions of stochastic differential equations. Teoriâ veroâtnostej i ee primeneniâ, Tome 39 (1994) no. 3, pp. 649-653. http://geodesic.mathdoc.fr/item/TVP_1994_39_3_a13/