Asymptotic properties of distributions of the maximum of a Gaussian nonstationary process occurring in covariance statistic
Teoriâ veroâtnostej i ee primeneniâ, Tome 39 (1994) no. 3, pp. 641-649
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper considers a separable Gaussian centered process $\eta (t)$ with a covariance function of the type
$$
\mathbf{M}\eta(t)\eta(s)=4\pi\int_{-\infty}^{+\infty}\cos\lambda t\cos\lambda sf^2(\lambda)\,d\lambda
$$
for different restrictions on the spectral density $f(\lambda )$.Such processes appear as weak limits of normed deviations of empirical covariance function
$$
\eta(t)=\lim_{T\to\infty}\sqrt T(r_T(t)-r(t))
$$
as $T\to\infty$. Here $f(\lambda)=(2\pi)^{-1}\int\exp(-i\lambda t)r(t)\,dt$. The paper studies the asymptotic behavior of a probability
$$
P(u,s)=\mathbf{P}\biggl(\sup_{|t|}|\eta(t)|>u\biggr)
$$
(as $u\to\infty$). Either the exact asymptotic or upper and lower estimates differing by a multiplicative constant are obtained for this probability. The case of Gaussian centered separable field is also considered. The results obtained may be applied for constructing the confidence interval for $r(t)$ in the uniform norm.
Keywords:
covariance function, exact asymptotic, spectral density, separable centered Gaussian field, Talagrand theorem.
@article{TVP_1994_39_3_a12,
author = {E. I. Ostrovskii and s. Yu. Tsykunova},
title = {Asymptotic properties of distributions of the maximum of a {Gaussian} nonstationary process occurring in covariance statistic},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {641--649},
publisher = {mathdoc},
volume = {39},
number = {3},
year = {1994},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1994_39_3_a12/}
}
TY - JOUR AU - E. I. Ostrovskii AU - s. Yu. Tsykunova TI - Asymptotic properties of distributions of the maximum of a Gaussian nonstationary process occurring in covariance statistic JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1994 SP - 641 EP - 649 VL - 39 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1994_39_3_a12/ LA - ru ID - TVP_1994_39_3_a12 ER -
%0 Journal Article %A E. I. Ostrovskii %A s. Yu. Tsykunova %T Asymptotic properties of distributions of the maximum of a Gaussian nonstationary process occurring in covariance statistic %J Teoriâ veroâtnostej i ee primeneniâ %D 1994 %P 641-649 %V 39 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TVP_1994_39_3_a12/ %G ru %F TVP_1994_39_3_a12
E. I. Ostrovskii; s. Yu. Tsykunova. Asymptotic properties of distributions of the maximum of a Gaussian nonstationary process occurring in covariance statistic. Teoriâ veroâtnostej i ee primeneniâ, Tome 39 (1994) no. 3, pp. 641-649. http://geodesic.mathdoc.fr/item/TVP_1994_39_3_a12/