Asymptotic properties of distributions of the maximum of a Gaussian nonstationary process occurring in covariance statistic
Teoriâ veroâtnostej i ee primeneniâ, Tome 39 (1994) no. 3, pp. 641-649

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper considers a separable Gaussian centered process $\eta (t)$ with a covariance function of the type $$ \mathbf{M}\eta(t)\eta(s)=4\pi\int_{-\infty}^{+\infty}\cos\lambda t\cos\lambda sf^2(\lambda)\,d\lambda $$ for different restrictions on the spectral density $f(\lambda )$.Such processes appear as weak limits of normed deviations of empirical covariance function $$ \eta(t)=\lim_{T\to\infty}\sqrt T(r_T(t)-r(t)) $$ as $T\to\infty$. Here $f(\lambda)=(2\pi)^{-1}\int\exp(-i\lambda t)r(t)\,dt$. The paper studies the asymptotic behavior of a probability $$ P(u,s)=\mathbf{P}\biggl(\sup_{|t|}|\eta(t)|>u\biggr) $$ (as $u\to\infty$). Either the exact asymptotic or upper and lower estimates differing by a multiplicative constant are obtained for this probability. The case of Gaussian centered separable field is also considered. The results obtained may be applied for constructing the confidence interval for $r(t)$ in the uniform norm.
Keywords: covariance function, exact asymptotic, spectral density, separable centered Gaussian field, Talagrand theorem.
@article{TVP_1994_39_3_a12,
     author = {E. I. Ostrovskii and s. Yu. Tsykunova},
     title = {Asymptotic properties of distributions of the maximum of a {Gaussian} nonstationary process occurring in covariance statistic},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {641--649},
     publisher = {mathdoc},
     volume = {39},
     number = {3},
     year = {1994},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1994_39_3_a12/}
}
TY  - JOUR
AU  - E. I. Ostrovskii
AU  - s. Yu. Tsykunova
TI  - Asymptotic properties of distributions of the maximum of a Gaussian nonstationary process occurring in covariance statistic
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1994
SP  - 641
EP  - 649
VL  - 39
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1994_39_3_a12/
LA  - ru
ID  - TVP_1994_39_3_a12
ER  - 
%0 Journal Article
%A E. I. Ostrovskii
%A s. Yu. Tsykunova
%T Asymptotic properties of distributions of the maximum of a Gaussian nonstationary process occurring in covariance statistic
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1994
%P 641-649
%V 39
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1994_39_3_a12/
%G ru
%F TVP_1994_39_3_a12
E. I. Ostrovskii; s. Yu. Tsykunova. Asymptotic properties of distributions of the maximum of a Gaussian nonstationary process occurring in covariance statistic. Teoriâ veroâtnostej i ee primeneniâ, Tome 39 (1994) no. 3, pp. 641-649. http://geodesic.mathdoc.fr/item/TVP_1994_39_3_a12/