No-arbitrage and equivalent martingale measures: an elementary proof of the Harrison–Pliska theorem
Teoriâ veroâtnostej i ee primeneniâ, Tome 39 (1994) no. 3, pp. 635-640
Cet article a éte moissonné depuis la source Math-Net.Ru
We give a new proof of a key result to the theorem that in the discrete-time stochastic model of a frictionless security market the absence of arbitrage possibilities is equivalent to the existence of a probability measure $Q$ which is absolute continuous with respect to the basic probability measure $P$ with the strictly positive and bounded density and such that all security prices are martingales with respect to $Q$. The proof is elementary in a sense that it does not involve a measurable selection theorem.
Keywords:
security market, equivalent martingale measure.
Mots-clés : no-arbitrage
Mots-clés : no-arbitrage
@article{TVP_1994_39_3_a11,
author = {Yu. M. Kabanov and D. O. Kramkov},
title = {No-arbitrage and equivalent martingale measures: an elementary proof of the {Harrison{\textendash}Pliska} theorem},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {635--640},
year = {1994},
volume = {39},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1994_39_3_a11/}
}
TY - JOUR AU - Yu. M. Kabanov AU - D. O. Kramkov TI - No-arbitrage and equivalent martingale measures: an elementary proof of the Harrison–Pliska theorem JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1994 SP - 635 EP - 640 VL - 39 IS - 3 UR - http://geodesic.mathdoc.fr/item/TVP_1994_39_3_a11/ LA - ru ID - TVP_1994_39_3_a11 ER -
%0 Journal Article %A Yu. M. Kabanov %A D. O. Kramkov %T No-arbitrage and equivalent martingale measures: an elementary proof of the Harrison–Pliska theorem %J Teoriâ veroâtnostej i ee primeneniâ %D 1994 %P 635-640 %V 39 %N 3 %U http://geodesic.mathdoc.fr/item/TVP_1994_39_3_a11/ %G ru %F TVP_1994_39_3_a11
Yu. M. Kabanov; D. O. Kramkov. No-arbitrage and equivalent martingale measures: an elementary proof of the Harrison–Pliska theorem. Teoriâ veroâtnostej i ee primeneniâ, Tome 39 (1994) no. 3, pp. 635-640. http://geodesic.mathdoc.fr/item/TVP_1994_39_3_a11/