On amarts with continuous time
Teoriâ veroâtnostej i ee primeneniâ, Tome 39 (1994) no. 3, pp. 627-635
Voir la notice de l'article provenant de la source Math-Net.Ru
We introduce a notion of a $D_v$-amart into consideration, which generalizes a notion of a martingale. For stochastic processes $(X_t(\omega))_{t\ge 0}$, which are $D_v$-amarts, we obtain sample properties of their trajectories such as the existence of
$$
\lim_{t\uparrow\tau(\omega)}X_t(\omega), \qquad \lim_{t\downarrow\tau(\omega)}X_t(\omega),
$$
where $\tau=\tau(\omega)$ are some or other stopping times, and the existence of modifications with right-continuous trajectories.
Mots-clés :
martingales, modifications
Keywords: amarts, $D_v$-amarts, stopping times.
Keywords: amarts, $D_v$-amarts, stopping times.
@article{TVP_1994_39_3_a10,
author = {I. A. Dzhvarsheishvili},
title = {On amarts with continuous time},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {627--635},
publisher = {mathdoc},
volume = {39},
number = {3},
year = {1994},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1994_39_3_a10/}
}
I. A. Dzhvarsheishvili. On amarts with continuous time. Teoriâ veroâtnostej i ee primeneniâ, Tome 39 (1994) no. 3, pp. 627-635. http://geodesic.mathdoc.fr/item/TVP_1994_39_3_a10/