Operator stable probability measures: an overview
Teoriâ veroâtnostej i ee primeneniâ, Tome 39 (1994) no. 2, pp. 357-373
Voir la notice de l'article provenant de la source Math-Net.Ru
We present an introduction to the theory of operator stable probability measures by providing an outline of the main results to date. The theory of operator stable probability measures is an extension to higher dimensional spaces of the classical theory of stable measures on the line. By departing from the historical order of development we are able to give a streamlined presentation of the key results in the theory. A new result about simultaneous centering of the symmetry group and the operator stable measure itself is included.
Keywords:
operator stable measures, infinitely divisible measures, stable measures.
@article{TVP_1994_39_2_a6,
author = {W. N. Hudson and J. D. Mason and J. A. Veeh},
title = {Operator stable probability measures: an overview},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {357--373},
publisher = {mathdoc},
volume = {39},
number = {2},
year = {1994},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1994_39_2_a6/}
}
TY - JOUR AU - W. N. Hudson AU - J. D. Mason AU - J. A. Veeh TI - Operator stable probability measures: an overview JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1994 SP - 357 EP - 373 VL - 39 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1994_39_2_a6/ LA - ru ID - TVP_1994_39_2_a6 ER -
W. N. Hudson; J. D. Mason; J. A. Veeh. Operator stable probability measures: an overview. Teoriâ veroâtnostej i ee primeneniâ, Tome 39 (1994) no. 2, pp. 357-373. http://geodesic.mathdoc.fr/item/TVP_1994_39_2_a6/