On representation of densities of stable laws by special functions
Teoriâ veroâtnostej i ee primeneniâ, Tome 39 (1994) no. 2, pp. 429-437

Voir la notice de l'article provenant de la source Math-Net.Ru

A representation of the density of a one-dimensional strongly stable law via Meijer's $G$-functions is obtained. The paper also considers the expressions of integral transforms with Euler kernels of these densities in terms of $G$-functions which make it possible to obtain representations of distribution functions of strongly stable laws with rational parameters. Some examples are given of representations of densities of multivariate spherically symmetric stable laws in terms of Meijer functions.
Keywords: one-dimensional strongly stable laws, multivariate spherically symmetric stable distributions, higher transcendental functions, generalized hypergeometrical series, Meijer's $G$-functions.
@article{TVP_1994_39_2_a12,
     author = {V. M. Zolotarev},
     title = {On representation of densities of stable laws by special functions},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {429--437},
     publisher = {mathdoc},
     volume = {39},
     number = {2},
     year = {1994},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1994_39_2_a12/}
}
TY  - JOUR
AU  - V. M. Zolotarev
TI  - On representation of densities of stable laws by special functions
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1994
SP  - 429
EP  - 437
VL  - 39
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1994_39_2_a12/
LA  - ru
ID  - TVP_1994_39_2_a12
ER  - 
%0 Journal Article
%A V. M. Zolotarev
%T On representation of densities of stable laws by special functions
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1994
%P 429-437
%V 39
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1994_39_2_a12/
%G ru
%F TVP_1994_39_2_a12
V. M. Zolotarev. On representation of densities of stable laws by special functions. Teoriâ veroâtnostej i ee primeneniâ, Tome 39 (1994) no. 2, pp. 429-437. http://geodesic.mathdoc.fr/item/TVP_1994_39_2_a12/