Large financial markets: asymptotic arbitrage and contiguity
Teoriâ veroâtnostej i ee primeneniâ, Tome 39 (1994) no. 1, pp. 222-229
Voir la notice de l'article provenant de la source Math-Net.Ru
We introduce a large financial market as a sequence of ordinary security market models (in continuous or discrete time). An important property of such markets is the absence of asymptotic arbitrage, i.e., a possibility to obtain “essential” nonrisk profits from “infinitesimally” small endowments. It is shown that this property is closely related to the contiguity of the equivalent martingale measures. To check the “no asymptotic arbitrage” property one can use the criteria of contiguity based on the Hellinger processes. We give an example of a large market with correlated asset prices where the absence of asymptotic arbitrage forces the returns from the assets to approach the security market line of the CAPM.
Keywords:
large security market, equivalent martingale measure, contiguity of measures, Hellinger process, Capital Asset Pricing Model (CAPM).
Mots-clés : no-arbitrage
Mots-clés : no-arbitrage
@article{TVP_1994_39_1_a8,
author = {Yu. M. Kabanov and D. O. Kramkov},
title = {Large financial markets: asymptotic arbitrage and contiguity},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {222--229},
publisher = {mathdoc},
volume = {39},
number = {1},
year = {1994},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1994_39_1_a8/}
}
TY - JOUR AU - Yu. M. Kabanov AU - D. O. Kramkov TI - Large financial markets: asymptotic arbitrage and contiguity JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1994 SP - 222 EP - 229 VL - 39 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1994_39_1_a8/ LA - ru ID - TVP_1994_39_1_a8 ER -
Yu. M. Kabanov; D. O. Kramkov. Large financial markets: asymptotic arbitrage and contiguity. Teoriâ veroâtnostej i ee primeneniâ, Tome 39 (1994) no. 1, pp. 222-229. http://geodesic.mathdoc.fr/item/TVP_1994_39_1_a8/