Models for option prices
Teoriâ veroâtnostej i ee primeneniâ, Tome 39 (1994) no. 1, pp. 150-190
Voir la notice de l'article provenant de la source Math-Net.Ru
Cox, Ross, and Rubinstein [6] introduced a binomial option price model and derived the seminal Black–Scholes pricing formula. In this paper we characterize all possible stock price models that can be approximated by the binomial models and derive the corresponding approximations for the pricing formulas. We introduce two additional randomizations in the binomial price models seeking more general and more realistic limiting models. The first type of model is based on a randomization of the number of price changes, the second one on a randomization of the ups and downs in the price process.As a result we also obtain price models with fat tails, higher peaks in the center, nonsymmetric etc., which are observed in typical asset return data. Following similar ideas as in [6] we also derive approximating option pricing formulas and discuss several examples.
Keywords:
option prices, Black–Scholes formula, binomial pricing process.
Mots-clés : stable distributions
Mots-clés : stable distributions
@article{TVP_1994_39_1_a4,
author = {S. T. Rachev and L. R\"uscheendorf},
title = {Models for option prices},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {150--190},
publisher = {mathdoc},
volume = {39},
number = {1},
year = {1994},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1994_39_1_a4/}
}
S. T. Rachev; L. Rüscheendorf. Models for option prices. Teoriâ veroâtnostej i ee primeneniâ, Tome 39 (1994) no. 1, pp. 150-190. http://geodesic.mathdoc.fr/item/TVP_1994_39_1_a4/