Cramér type large deviations for some $U$-statistics
Teoriâ veroâtnostej i ee primeneniâ, Tome 38 (1993) no. 4, pp. 858-868
Cet article a éte moissonné depuis la source Math-Net.Ru
We prove Cramér type large deviations for some $U$-statistics of degree two with kernel $h(x,y)$ being of bounded variation on bounded rectangles. The proof consists of two basic steps. First some explicit bounds (similar to Helmers' bounds for $L$-statistics) for the $U$-statistics are obtained. Then Linnik's result and some results exploiting strong approximations are applied.
Keywords:
$U$-statistics, large deviations, strong approximations.
@article{TVP_1993_38_4_a8,
author = {T. Inglot and T. Ledwina},
title = {Cram\'er type large deviations for some $U$-statistics},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {858--868},
year = {1993},
volume = {38},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_1993_38_4_a8/}
}
T. Inglot; T. Ledwina. Cramér type large deviations for some $U$-statistics. Teoriâ veroâtnostej i ee primeneniâ, Tome 38 (1993) no. 4, pp. 858-868. http://geodesic.mathdoc.fr/item/TVP_1993_38_4_a8/