Cram\'er type large deviations for some $U$-statistics
Teoriâ veroâtnostej i ee primeneniâ, Tome 38 (1993) no. 4, pp. 858-868

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove Cramér type large deviations for some $U$-statistics of degree two with kernel $h(x,y)$ being of bounded variation on bounded rectangles. The proof consists of two basic steps. First some explicit bounds (similar to Helmers' bounds for $L$-statistics) for the $U$-statistics are obtained. Then Linnik's result and some results exploiting strong approximations are applied.
Keywords: $U$-statistics, large deviations, strong approximations.
@article{TVP_1993_38_4_a8,
     author = {T. Inglot and T. Ledwina},
     title = {Cram\'er type large deviations for some $U$-statistics},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {858--868},
     publisher = {mathdoc},
     volume = {38},
     number = {4},
     year = {1993},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_1993_38_4_a8/}
}
TY  - JOUR
AU  - T. Inglot
AU  - T. Ledwina
TI  - Cram\'er type large deviations for some $U$-statistics
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1993
SP  - 858
EP  - 868
VL  - 38
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1993_38_4_a8/
LA  - en
ID  - TVP_1993_38_4_a8
ER  - 
%0 Journal Article
%A T. Inglot
%A T. Ledwina
%T Cram\'er type large deviations for some $U$-statistics
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1993
%P 858-868
%V 38
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1993_38_4_a8/
%G en
%F TVP_1993_38_4_a8
T. Inglot; T. Ledwina. Cram\'er type large deviations for some $U$-statistics. Teoriâ veroâtnostej i ee primeneniâ, Tome 38 (1993) no. 4, pp. 858-868. http://geodesic.mathdoc.fr/item/TVP_1993_38_4_a8/