On the L\'evy--Khinchin formula in noncommutative probability theory
Teoriâ veroâtnostej i ee primeneniâ, Tome 38 (1993) no. 4, pp. 842-857
Voir la notice de l'article provenant de la source Math-Net.Ru
An important role in modern statistical quantum measurement theory is played by measures that assume values in a noncommutative algebra of transformations. This paper investigates convolution semigroups of such measures arising in connection with measurement processes that proceed continuously in time. The principal result is a noncommutative generalization of the Lévy–Khinchin formula, which describes the structure of the convolution semigroups in terms of their Fourier transforms.
Keywords:
convolution semigroup, quasi-characteristic function.
Mots-clés : instrument
Mots-clés : instrument
@article{TVP_1993_38_4_a7,
author = {A. S. Kholevo},
title = {On the {L\'evy--Khinchin} formula in noncommutative probability theory},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {842--857},
publisher = {mathdoc},
volume = {38},
number = {4},
year = {1993},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1993_38_4_a7/}
}
A. S. Kholevo. On the L\'evy--Khinchin formula in noncommutative probability theory. Teoriâ veroâtnostej i ee primeneniâ, Tome 38 (1993) no. 4, pp. 842-857. http://geodesic.mathdoc.fr/item/TVP_1993_38_4_a7/