Nonparametric estimation of smooth spectral densities of Gaussian stationary sequences
Teoriâ veroâtnostej i ee primeneniâ, Tome 38 (1993) no. 4, pp. 775-786
Voir la notice de l'article provenant de la source Math-Net.Ru
he problem of spectral density estimation in the. Hilbert space norm of $L_2 (-\pi,\pi)$ is considered for a Gaussian stationary sequence. On the basis of the criterion involving the unbiased estimate for mean square risk of linear estimates we construct the class of nonlinear estimates for spectral density which are locally asymptotically minimax on the neighborhoods of smooth functions.
Keywords:
stationary Gaussian sequence, spectral density, linear estimate, mean square risk, family of neighborhoods, asymptotically minimax estimate.
@article{TVP_1993_38_4_a3,
author = {G. K. Golubev},
title = {Nonparametric estimation of smooth spectral densities of {Gaussian} stationary sequences},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {775--786},
publisher = {mathdoc},
volume = {38},
number = {4},
year = {1993},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1993_38_4_a3/}
}
TY - JOUR AU - G. K. Golubev TI - Nonparametric estimation of smooth spectral densities of Gaussian stationary sequences JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1993 SP - 775 EP - 786 VL - 38 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1993_38_4_a3/ LA - ru ID - TVP_1993_38_4_a3 ER -
G. K. Golubev. Nonparametric estimation of smooth spectral densities of Gaussian stationary sequences. Teoriâ veroâtnostej i ee primeneniâ, Tome 38 (1993) no. 4, pp. 775-786. http://geodesic.mathdoc.fr/item/TVP_1993_38_4_a3/