On concentration of distributions of sums of independent random vectors on bounded sets
Teoriâ veroâtnostej i ee primeneniâ, Tome 38 (1993) no. 4, pp. 882-891

Voir la notice de l'article provenant de la source Math-Net.Ru

Bounds are obtained for the concentration function $$ Q_n (A) =\sup_{x\in\mathbf{R}^k}{\mathbf P}(S_n \in A + x) $$ of sums $S_n=X_1+\cdots+X_n $ of independent random vectors $X_1,\ldots,X_n$ with values in the $k$-dimensional Euclidean space $\mathbf{R}^k$ on bounded Borel sets $A$ in $\mathbf{R}^k$.
Keywords: concentration function, Esseen inequality, Enger inequality, spherical and non-spherical concentration functions.
@article{TVP_1993_38_4_a11,
     author = {Yu. V. Larin},
     title = {On concentration of distributions of sums of independent random vectors on bounded sets},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {882--891},
     publisher = {mathdoc},
     volume = {38},
     number = {4},
     year = {1993},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1993_38_4_a11/}
}
TY  - JOUR
AU  - Yu. V. Larin
TI  - On concentration of distributions of sums of independent random vectors on bounded sets
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1993
SP  - 882
EP  - 891
VL  - 38
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1993_38_4_a11/
LA  - ru
ID  - TVP_1993_38_4_a11
ER  - 
%0 Journal Article
%A Yu. V. Larin
%T On concentration of distributions of sums of independent random vectors on bounded sets
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1993
%P 882-891
%V 38
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1993_38_4_a11/
%G ru
%F TVP_1993_38_4_a11
Yu. V. Larin. On concentration of distributions of sums of independent random vectors on bounded sets. Teoriâ veroâtnostej i ee primeneniâ, Tome 38 (1993) no. 4, pp. 882-891. http://geodesic.mathdoc.fr/item/TVP_1993_38_4_a11/