On concentration of distributions of sums of independent random vectors on bounded sets
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 38 (1993) no. 4, pp. 882-891
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Bounds are obtained for the concentration function 
$$
Q_n (A) =\sup_{x\in\mathbf{R}^k}{\mathbf P}(S_n \in A + x)
$$
of sums $S_n=X_1+\cdots+X_n $ of independent random vectors $X_1,\ldots,X_n$ with values in the $k$-dimensional Euclidean space $\mathbf{R}^k$ on bounded Borel sets $A$ in $\mathbf{R}^k$.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
concentration function, Esseen inequality, Enger inequality, spherical and non-spherical concentration functions.
                    
                  
                
                
                @article{TVP_1993_38_4_a11,
     author = {Yu. V. Larin},
     title = {On concentration of distributions of sums of independent random vectors on bounded sets},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {882--891},
     publisher = {mathdoc},
     volume = {38},
     number = {4},
     year = {1993},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1993_38_4_a11/}
}
                      
                      
                    TY - JOUR AU - Yu. V. Larin TI - On concentration of distributions of sums of independent random vectors on bounded sets JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1993 SP - 882 EP - 891 VL - 38 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1993_38_4_a11/ LA - ru ID - TVP_1993_38_4_a11 ER -
Yu. V. Larin. On concentration of distributions of sums of independent random vectors on bounded sets. Teoriâ veroâtnostej i ee primeneniâ, Tome 38 (1993) no. 4, pp. 882-891. http://geodesic.mathdoc.fr/item/TVP_1993_38_4_a11/
