On concentration of distributions of sums of independent random vectors on bounded sets
Teoriâ veroâtnostej i ee primeneniâ, Tome 38 (1993) no. 4, pp. 882-891
Cet article a éte moissonné depuis la source Math-Net.Ru
Bounds are obtained for the concentration function $$ Q_n (A) =\sup_{x\in\mathbf{R}^k}{\mathbf P}(S_n \in A + x) $$ of sums $S_n=X_1+\cdots+X_n $ of independent random vectors $X_1,\ldots,X_n$ with values in the $k$-dimensional Euclidean space $\mathbf{R}^k$ on bounded Borel sets $A$ in $\mathbf{R}^k$.
Keywords:
concentration function, Esseen inequality, Enger inequality, spherical and non-spherical concentration functions.
@article{TVP_1993_38_4_a11,
author = {Yu. V. Larin},
title = {On concentration of distributions of sums of independent random vectors on bounded sets},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {882--891},
year = {1993},
volume = {38},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1993_38_4_a11/}
}
Yu. V. Larin. On concentration of distributions of sums of independent random vectors on bounded sets. Teoriâ veroâtnostej i ee primeneniâ, Tome 38 (1993) no. 4, pp. 882-891. http://geodesic.mathdoc.fr/item/TVP_1993_38_4_a11/