Functional central limit theorems for a class of quadratic forms in independent random variables
Teoriâ veroâtnostej i ee primeneniâ, Tome 38 (1993) no. 3, pp. 600-612
Cet article a éte moissonné depuis la source Math-Net.Ru
The partial-sum processes defined by a quadratic form in independent random variables are martingales. For such processes, using suitable tools of the martingale limit theory, we obtain both sufficient and necessary conditions for the functional central limit theorem to hold. Quadratic forms with nulls on the diagonal are considered only.
Keywords:
quadratic forms in random variables, functional central limit theorem, Wiener process, Rademacher sequence.
Mots-clés : martingales
Mots-clés : martingales
@article{TVP_1993_38_3_a8,
author = {A. Jakubowski and J. M\'emin},
title = {Functional central limit theorems for a~class of quadratic forms in independent random variables},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {600--612},
year = {1993},
volume = {38},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1993_38_3_a8/}
}
TY - JOUR AU - A. Jakubowski AU - J. Mémin TI - Functional central limit theorems for a class of quadratic forms in independent random variables JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1993 SP - 600 EP - 612 VL - 38 IS - 3 UR - http://geodesic.mathdoc.fr/item/TVP_1993_38_3_a8/ LA - ru ID - TVP_1993_38_3_a8 ER -
A. Jakubowski; J. Mémin. Functional central limit theorems for a class of quadratic forms in independent random variables. Teoriâ veroâtnostej i ee primeneniâ, Tome 38 (1993) no. 3, pp. 600-612. http://geodesic.mathdoc.fr/item/TVP_1993_38_3_a8/