On a refinement of the central limit theorem for sums of independent random indicators
Teoriâ veroâtnostej i ee primeneniâ, Tome 38 (1993) no. 3, pp. 540-552
Voir la notice de l'article provenant de la source Math-Net.Ru
Explicit and rather tight upper bounds for the distance (in the uniform metric) between the distribution function of a sum of independent random indicators and its asymptotic expansion are obtained.
Keywords:
random indicators, nonhomogenuous Bernoulli scheme, asymptotic expansion, closeness of approximation.
@article{TVP_1993_38_3_a4,
author = {V. G. Mikhailov},
title = {On a refinement of the central limit theorem for sums of independent random indicators},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {540--552},
publisher = {mathdoc},
volume = {38},
number = {3},
year = {1993},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1993_38_3_a4/}
}
TY - JOUR AU - V. G. Mikhailov TI - On a refinement of the central limit theorem for sums of independent random indicators JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1993 SP - 540 EP - 552 VL - 38 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1993_38_3_a4/ LA - ru ID - TVP_1993_38_3_a4 ER -
V. G. Mikhailov. On a refinement of the central limit theorem for sums of independent random indicators. Teoriâ veroâtnostej i ee primeneniâ, Tome 38 (1993) no. 3, pp. 540-552. http://geodesic.mathdoc.fr/item/TVP_1993_38_3_a4/