On a refinement of the central limit theorem for sums of independent random indicators
Teoriâ veroâtnostej i ee primeneniâ, Tome 38 (1993) no. 3, pp. 540-552

Voir la notice de l'article provenant de la source Math-Net.Ru

Explicit and rather tight upper bounds for the distance (in the uniform metric) between the distribution function of a sum of independent random indicators and its asymptotic expansion are obtained.
Keywords: random indicators, nonhomogenuous Bernoulli scheme, asymptotic expansion, closeness of approximation.
@article{TVP_1993_38_3_a4,
     author = {V. G. Mikhailov},
     title = {On a refinement of the central limit theorem for sums of independent random indicators},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {540--552},
     publisher = {mathdoc},
     volume = {38},
     number = {3},
     year = {1993},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1993_38_3_a4/}
}
TY  - JOUR
AU  - V. G. Mikhailov
TI  - On a refinement of the central limit theorem for sums of independent random indicators
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1993
SP  - 540
EP  - 552
VL  - 38
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1993_38_3_a4/
LA  - ru
ID  - TVP_1993_38_3_a4
ER  - 
%0 Journal Article
%A V. G. Mikhailov
%T On a refinement of the central limit theorem for sums of independent random indicators
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1993
%P 540-552
%V 38
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1993_38_3_a4/
%G ru
%F TVP_1993_38_3_a4
V. G. Mikhailov. On a refinement of the central limit theorem for sums of independent random indicators. Teoriâ veroâtnostej i ee primeneniâ, Tome 38 (1993) no. 3, pp. 540-552. http://geodesic.mathdoc.fr/item/TVP_1993_38_3_a4/