Convergence of types under monotonous mappings
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 38 (1993) no. 3, pp. 679-684
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $\mathcal F$ be the set of all D.F. on $\overline{\mathbf R}{}^d=[-\infty,\infty)^d$. Denote by $GMA$ the group of all max-automorphisms of $\overline{\mathbf R}{}^d$, i.e. such one-to-one mappings $L$ that preserve the max-operation in $\overline{\mathbf R}{}^d$, $L(x\vee y)=L(x)\vee L(y)$. We define type $(F):=\{G\in\mathscr{F}:\exists T\in GMA,G=F\circ T\}$. Hеге the convergence to type theorem is proved for distributions in $\mathcal F$ and norming sequences $\{L_n\}$ in $GMA$.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
extreme values, max-automorphisms.
Mots-clés : Convergence of types
                    
                  
                
                
                Mots-clés : Convergence of types
@article{TVP_1993_38_3_a21,
     author = {E. Pancheva},
     title = {Convergence of types under monotonous mappings},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {679--684},
     publisher = {mathdoc},
     volume = {38},
     number = {3},
     year = {1993},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_1993_38_3_a21/}
}
                      
                      
                    E. Pancheva. Convergence of types under monotonous mappings. Teoriâ veroâtnostej i ee primeneniâ, Tome 38 (1993) no. 3, pp. 679-684. http://geodesic.mathdoc.fr/item/TVP_1993_38_3_a21/
