Convergence of types under monotonous mappings
Teoriâ veroâtnostej i ee primeneniâ, Tome 38 (1993) no. 3, pp. 679-684

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathcal F$ be the set of all D.F. on $\overline{\mathbf R}{}^d=[-\infty,\infty)^d$. Denote by $GMA$ the group of all max-automorphisms of $\overline{\mathbf R}{}^d$, i.e. such one-to-one mappings $L$ that preserve the max-operation in $\overline{\mathbf R}{}^d$, $L(x\vee y)=L(x)\vee L(y)$. We define type $(F):=\{G\in\mathscr{F}:\exists T\in GMA,G=F\circ T\}$. Hеге the convergence to type theorem is proved for distributions in $\mathcal F$ and norming sequences $\{L_n\}$ in $GMA$.
Keywords: extreme values, max-automorphisms.
Mots-clés : Convergence of types
@article{TVP_1993_38_3_a21,
     author = {E. Pancheva},
     title = {Convergence of types under monotonous mappings},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {679--684},
     publisher = {mathdoc},
     volume = {38},
     number = {3},
     year = {1993},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_1993_38_3_a21/}
}
TY  - JOUR
AU  - E. Pancheva
TI  - Convergence of types under monotonous mappings
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1993
SP  - 679
EP  - 684
VL  - 38
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1993_38_3_a21/
LA  - en
ID  - TVP_1993_38_3_a21
ER  - 
%0 Journal Article
%A E. Pancheva
%T Convergence of types under monotonous mappings
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1993
%P 679-684
%V 38
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1993_38_3_a21/
%G en
%F TVP_1993_38_3_a21
E. Pancheva. Convergence of types under monotonous mappings. Teoriâ veroâtnostej i ee primeneniâ, Tome 38 (1993) no. 3, pp. 679-684. http://geodesic.mathdoc.fr/item/TVP_1993_38_3_a21/