On multivariate skewness and kurtosis
Teoriâ veroâtnostej i ee primeneniâ, Tome 38 (1993) no. 3, pp. 675-679
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $X$ be a $d$-dimensional standardized random variable $(\mathbf{E}(X)=0,\operatorname{cov}(X)=1)$. Then for a multivariate analogue of skewness $s=\mathbf{E}(\|X\|^2X)$ and kurtosis $k=\mathbf{E}XX^TXX^T-(d+2)I$ we show that $\|s\|^2\le\operatorname{tr}k+2d$. For infinitly divisible distributions $\|s\|^2\le\operatorname{tr}k$.
Keywords:
multivariate skewness, infinitely divisible distributions.
Mots-clés : kurtosis
Mots-clés : kurtosis
@article{TVP_1993_38_3_a20,
author = {T. F. M\'ori and V. K. Rohatgi and G. J. Szekely},
title = {On multivariate skewness and kurtosis},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {675--679},
year = {1993},
volume = {38},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_1993_38_3_a20/}
}
T. F. Móri; V. K. Rohatgi; G. J. Szekely. On multivariate skewness and kurtosis. Teoriâ veroâtnostej i ee primeneniâ, Tome 38 (1993) no. 3, pp. 675-679. http://geodesic.mathdoc.fr/item/TVP_1993_38_3_a20/