On multivariate skewness and kurtosis
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 38 (1993) no. 3, pp. 675-679
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $X$ be a $d$-dimensional standardized random variable $(\mathbf{E}(X)=0,\operatorname{cov}(X)=1)$. Then for a multivariate analogue of skewness $s=\mathbf{E}(\|X\|^2X)$ and
kurtosis $k=\mathbf{E}XX^TXX^T-(d+2)I$ we show that $\|s\|^2\le\operatorname{tr}k+2d$. For infinitly
divisible distributions $\|s\|^2\le\operatorname{tr}k$.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
multivariate skewness, infinitely divisible distributions.
Mots-clés : kurtosis
                    
                  
                
                
                Mots-clés : kurtosis
@article{TVP_1993_38_3_a20,
     author = {T. F. M\'ori and V. K. Rohatgi and G. J. Szekely},
     title = {On multivariate skewness and kurtosis},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {675--679},
     publisher = {mathdoc},
     volume = {38},
     number = {3},
     year = {1993},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_1993_38_3_a20/}
}
                      
                      
                    T. F. Móri; V. K. Rohatgi; G. J. Szekely. On multivariate skewness and kurtosis. Teoriâ veroâtnostej i ee primeneniâ, Tome 38 (1993) no. 3, pp. 675-679. http://geodesic.mathdoc.fr/item/TVP_1993_38_3_a20/
