On multivariate skewness and kurtosis
Teoriâ veroâtnostej i ee primeneniâ, Tome 38 (1993) no. 3, pp. 675-679

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X$ be a $d$-dimensional standardized random variable $(\mathbf{E}(X)=0,\operatorname{cov}(X)=1)$. Then for a multivariate analogue of skewness $s=\mathbf{E}(\|X\|^2X)$ and kurtosis $k=\mathbf{E}XX^TXX^T-(d+2)I$ we show that $\|s\|^2\le\operatorname{tr}k+2d$. For infinitly divisible distributions $\|s\|^2\le\operatorname{tr}k$.
Keywords: multivariate skewness, infinitely divisible distributions.
Mots-clés : kurtosis
@article{TVP_1993_38_3_a20,
     author = {T. F. M\'ori and V. K. Rohatgi and G. J. Szekely},
     title = {On multivariate skewness and kurtosis},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {675--679},
     publisher = {mathdoc},
     volume = {38},
     number = {3},
     year = {1993},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_1993_38_3_a20/}
}
TY  - JOUR
AU  - T. F. Móri
AU  - V. K. Rohatgi
AU  - G. J. Szekely
TI  - On multivariate skewness and kurtosis
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1993
SP  - 675
EP  - 679
VL  - 38
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1993_38_3_a20/
LA  - en
ID  - TVP_1993_38_3_a20
ER  - 
%0 Journal Article
%A T. F. Móri
%A V. K. Rohatgi
%A G. J. Szekely
%T On multivariate skewness and kurtosis
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1993
%P 675-679
%V 38
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1993_38_3_a20/
%G en
%F TVP_1993_38_3_a20
T. F. Móri; V. K. Rohatgi; G. J. Szekely. On multivariate skewness and kurtosis. Teoriâ veroâtnostej i ee primeneniâ, Tome 38 (1993) no. 3, pp. 675-679. http://geodesic.mathdoc.fr/item/TVP_1993_38_3_a20/