Limit theorems for the total number of descendants for the Galton--Watson branching process
Teoriâ veroâtnostej i ee primeneniâ, Tome 38 (1993) no. 3, pp. 503-528

Voir la notice de l'article provenant de la source Math-Net.Ru

The main results of the present paper deal with the asymptotic behavior of the conditional distribution for the whole number of descendants $S_n $ of a single particle in the Galton–Watson process with respect to the condition that the process degenerates at time n and the expectation for the number of particles generated by one particle tends to 1 as $n \to \infty $.
Keywords: the Galton–Watson branching processes, processes close to critical ones, degeneracy, asymptotic behavior of the total number of descendants.
@article{TVP_1993_38_3_a2,
     author = {A. V. Karpenko and S. V. Nagaev},
     title = {Limit theorems for the total number of descendants for the {Galton--Watson} branching process},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {503--528},
     publisher = {mathdoc},
     volume = {38},
     number = {3},
     year = {1993},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1993_38_3_a2/}
}
TY  - JOUR
AU  - A. V. Karpenko
AU  - S. V. Nagaev
TI  - Limit theorems for the total number of descendants for the Galton--Watson branching process
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1993
SP  - 503
EP  - 528
VL  - 38
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1993_38_3_a2/
LA  - ru
ID  - TVP_1993_38_3_a2
ER  - 
%0 Journal Article
%A A. V. Karpenko
%A S. V. Nagaev
%T Limit theorems for the total number of descendants for the Galton--Watson branching process
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1993
%P 503-528
%V 38
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1993_38_3_a2/
%G ru
%F TVP_1993_38_3_a2
A. V. Karpenko; S. V. Nagaev. Limit theorems for the total number of descendants for the Galton--Watson branching process. Teoriâ veroâtnostej i ee primeneniâ, Tome 38 (1993) no. 3, pp. 503-528. http://geodesic.mathdoc.fr/item/TVP_1993_38_3_a2/