A stochastic measure and nonlinear approximation of some random fields
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 38 (1993) no. 3, pp. 666-670
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			For a random field $\{H_p(x,y),x,y\ge0\}$ where $H_p(x,y)=H_p(\eta(x,y))$, $H_p(z)$ is
the Hermite polynomial of degree $p$ and $\{\eta(x,y),x,y\ge0\}$ is a real Gaussian random
field with $\eta(0,y)=\eta(x,0)=\mathbf{E}\eta(x,y)=0$ a stochastic measure and nonlinear
approximations are introduced and properties of mean-square error of approximations
are studied.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
Gaussian random fields, stochastic measures, nonlinear approximations, mean-square error.
                    
                    
                    
                  
                
                
                @article{TVP_1993_38_3_a18,
     author = {Z. A. Ivkovi\'c},
     title = {A stochastic measure and nonlinear approximation of some random fields},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {666--670},
     publisher = {mathdoc},
     volume = {38},
     number = {3},
     year = {1993},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_1993_38_3_a18/}
}
                      
                      
                    Z. A. Ivković. A stochastic measure and nonlinear approximation of some random fields. Teoriâ veroâtnostej i ee primeneniâ, Tome 38 (1993) no. 3, pp. 666-670. http://geodesic.mathdoc.fr/item/TVP_1993_38_3_a18/
