A stochastic measure and nonlinear approximation of some random fields
Teoriâ veroâtnostej i ee primeneniâ, Tome 38 (1993) no. 3, pp. 666-670

Voir la notice de l'article provenant de la source Math-Net.Ru

For a random field $\{H_p(x,y),x,y\ge0\}$ where $H_p(x,y)=H_p(\eta(x,y))$, $H_p(z)$ is the Hermite polynomial of degree $p$ and $\{\eta(x,y),x,y\ge0\}$ is a real Gaussian random field with $\eta(0,y)=\eta(x,0)=\mathbf{E}\eta(x,y)=0$ a stochastic measure and nonlinear approximations are introduced and properties of mean-square error of approximations are studied.
Keywords: Gaussian random fields, stochastic measures, nonlinear approximations, mean-square error.
@article{TVP_1993_38_3_a18,
     author = {Z. A. Ivkovi\'c},
     title = {A stochastic measure and nonlinear approximation of some random fields},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {666--670},
     publisher = {mathdoc},
     volume = {38},
     number = {3},
     year = {1993},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_1993_38_3_a18/}
}
TY  - JOUR
AU  - Z. A. Ivković
TI  - A stochastic measure and nonlinear approximation of some random fields
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1993
SP  - 666
EP  - 670
VL  - 38
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1993_38_3_a18/
LA  - en
ID  - TVP_1993_38_3_a18
ER  - 
%0 Journal Article
%A Z. A. Ivković
%T A stochastic measure and nonlinear approximation of some random fields
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1993
%P 666-670
%V 38
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1993_38_3_a18/
%G en
%F TVP_1993_38_3_a18
Z. A. Ivković. A stochastic measure and nonlinear approximation of some random fields. Teoriâ veroâtnostej i ee primeneniâ, Tome 38 (1993) no. 3, pp. 666-670. http://geodesic.mathdoc.fr/item/TVP_1993_38_3_a18/