Cauchy equation on discrete domain and some characterisation theorems
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 38 (1993) no. 3, pp. 661-666
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Discrete version of normal distribution, i.e., $P(x)=c\exp\{-\beta x^2\}$, $\beta>0$, $x\in\mathbf{Z}$, is characterised via the solution of cauchy type equation on discrete domain in
dimension 4 or higher. It is also shown that this characterisation does not necessarily
holds for second and third dimensions. Some statistical aspects of radial symmetry
and eccentricity along with the properties of this distribution are also discussed.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
radial symmetry, eccentricity, discrete normal
Mots-clés : Cauchy equation, distribution.
                    
                  
                
                
                Mots-clés : Cauchy equation, distribution.
@article{TVP_1993_38_3_a17,
     author = {R. Dasgupta},
     title = {Cauchy equation on discrete domain and some characterisation theorems},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {661--666},
     publisher = {mathdoc},
     volume = {38},
     number = {3},
     year = {1993},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_1993_38_3_a17/}
}
                      
                      
                    R. Dasgupta. Cauchy equation on discrete domain and some characterisation theorems. Teoriâ veroâtnostej i ee primeneniâ, Tome 38 (1993) no. 3, pp. 661-666. http://geodesic.mathdoc.fr/item/TVP_1993_38_3_a17/
