Cauchy equation on discrete domain and some characterisation theorems
Teoriâ veroâtnostej i ee primeneniâ, Tome 38 (1993) no. 3, pp. 661-666

Voir la notice de l'article provenant de la source Math-Net.Ru

Discrete version of normal distribution, i.e., $P(x)=c\exp\{-\beta x^2\}$, $\beta>0$, $x\in\mathbf{Z}$, is characterised via the solution of cauchy type equation on discrete domain in dimension 4 or higher. It is also shown that this characterisation does not necessarily holds for second and third dimensions. Some statistical aspects of radial symmetry and eccentricity along with the properties of this distribution are also discussed.
Keywords: radial symmetry, eccentricity, discrete normal
Mots-clés : Cauchy equation, distribution.
@article{TVP_1993_38_3_a17,
     author = {R. Dasgupta},
     title = {Cauchy equation on discrete domain and some characterisation theorems},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {661--666},
     publisher = {mathdoc},
     volume = {38},
     number = {3},
     year = {1993},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_1993_38_3_a17/}
}
TY  - JOUR
AU  - R. Dasgupta
TI  - Cauchy equation on discrete domain and some characterisation theorems
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1993
SP  - 661
EP  - 666
VL  - 38
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1993_38_3_a17/
LA  - en
ID  - TVP_1993_38_3_a17
ER  - 
%0 Journal Article
%A R. Dasgupta
%T Cauchy equation on discrete domain and some characterisation theorems
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1993
%P 661-666
%V 38
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1993_38_3_a17/
%G en
%F TVP_1993_38_3_a17
R. Dasgupta. Cauchy equation on discrete domain and some characterisation theorems. Teoriâ veroâtnostej i ee primeneniâ, Tome 38 (1993) no. 3, pp. 661-666. http://geodesic.mathdoc.fr/item/TVP_1993_38_3_a17/