Inequalities for concentration of a decomposition
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 38 (1993) no. 3, pp. 645-652
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			For a measure $P$ defined on the $\sigma $-algebra $B$ of Borel sets of the real line with Lebesgue measure $L$, the concentration functions 
$$
Q({P,z})=\sup_{x \in R}\mathbf{P}({[{x,x + z})}),
\qquad 
\widehat Q({P,z})=\sup\{{\mathbf{P}(A):L(A)\le z,A\in\mathcal{B}}\}
$$
and the concentration function of the decomposition $\widehat P$: 
\begin{align*} 
\widehat P({[{-z,0})})=\widehat P({({0,z}]})=(\widehat Q(P,2z)-\widehat Q(P,0))/2,
\qquad z > 0, 
\\
\widehat P({\{0\}})=\widehat Q({P,0}).
\end{align*}
are introduced.It is proved that if the finite measures $P_k $ and $T_k $ satisfy $\widehat Q(P_k ,z) \le \widehat Q(T_k ,z), k = 1, \ldots ,n$, then $\widehat Q(P_1 * \cdots * P_n ,z) \le Q(\widehat P_1 * \cdots * \widehat P_n ,z) \le Q(\widehat T_1 * \cdots * \widehat T_n ,z)$.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
concentration function, concentration function of a decomposition, inequalities for distribution convolutions.
                    
                  
                
                
                @article{TVP_1993_38_3_a14,
     author = {B. A. Rogozin},
     title = {Inequalities for concentration of a decomposition},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {645--652},
     publisher = {mathdoc},
     volume = {38},
     number = {3},
     year = {1993},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1993_38_3_a14/}
}
                      
                      
                    B. A. Rogozin. Inequalities for concentration of a decomposition. Teoriâ veroâtnostej i ee primeneniâ, Tome 38 (1993) no. 3, pp. 645-652. http://geodesic.mathdoc.fr/item/TVP_1993_38_3_a14/
