Limit theorems for unions of random sets under multiplicative normalization
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 38 (1993) no. 3, pp. 638-645
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			This paper finds conditions for weak convergence of normalized unions $a_n^{ - 1} (A_1 \cup \ldots A_n )$ of independent and identically distributed random closed sets $A_1 , \ldots ,A_n$ in terms of regular variation of corresponding accompanying functionals. The special case $A_1 = M(\xi )$, where $M$ is a multivalued function and $\xi $ a random vector with regularly varying density is also considered.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
random closed sets, regularly varying function, capacity, max-stable law.
                    
                  
                
                
                @article{TVP_1993_38_3_a13,
     author = {I. S. Molchanov},
     title = {Limit theorems for unions of random sets under multiplicative normalization},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {638--645},
     publisher = {mathdoc},
     volume = {38},
     number = {3},
     year = {1993},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1993_38_3_a13/}
}
                      
                      
                    TY - JOUR AU - I. S. Molchanov TI - Limit theorems for unions of random sets under multiplicative normalization JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1993 SP - 638 EP - 645 VL - 38 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1993_38_3_a13/ LA - ru ID - TVP_1993_38_3_a13 ER -
I. S. Molchanov. Limit theorems for unions of random sets under multiplicative normalization. Teoriâ veroâtnostej i ee primeneniâ, Tome 38 (1993) no. 3, pp. 638-645. http://geodesic.mathdoc.fr/item/TVP_1993_38_3_a13/
