Semimartingales of processes with independent increments and enlargement of filtration
Teoriâ veroâtnostej i ee primeneniâ, Tome 38 (1993) no. 3, pp. 491-502
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $X$ be a process with independent increments, $\mathcal{F} = (\mathcal{F}_t )$, $0 \le t \le T, \mathcal{F} = \sigma (X_s ,s \le t)$ a natural filtration. Denote $$ G_t = \sigma \{ {X_s ,s \le t; X^c ( T ); p\{ ] {0;T} ]; A \in \mathcal{B} \}} \},\qquad t \le T, $$ where ${X^c }$ is a continuous martingale component, ${p\{ { ] {0;T} ]; A \in \mathcal{B}}\}}$ is the integer-valued Poisson measure generated by ${X,\mathcal{B}}$ is the Borel $\sigma $-algebra. The paper discusses conditions under which any process $Y$ being a semimartingale with respect to filtration $F$ is also a semimartingale with respect to filtration $G$.
Keywords:
processes with independent increments, semimartingales, extension of a filtration flow.
@article{TVP_1993_38_3_a1,
author = {L. I. Gal'chuk},
title = {Semimartingales of processes with independent increments and enlargement of filtration},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {491--502},
year = {1993},
volume = {38},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1993_38_3_a1/}
}
L. I. Gal'chuk. Semimartingales of processes with independent increments and enlargement of filtration. Teoriâ veroâtnostej i ee primeneniâ, Tome 38 (1993) no. 3, pp. 491-502. http://geodesic.mathdoc.fr/item/TVP_1993_38_3_a1/